[1] | Berry M. W., Dumais S. T., & O’Brien G. W. (1995). Using linear algebra for intelligent information retrieval. Siam Review, 37(4), 573-595. | [2] | Blei D. M., Ng A. Y., & Jordan M. I. (2003). Latent dirichlet allocation. Journal of Machine Learning Research, 3, 993-1022. | [3] | Carbonell Jaime, & Goldstein. (1998). The use of MMR, diversity-based reranking for reordering documents and producing summaries. Proceedings of the 21st annual international ACM SIGIR conference on Research and development in information retrieval, 335-336. | [4] | Cohan A., & Goharian,N. (2015). Scientific article summarization using citation-context and article’s discourse structure. Proceedings of Conference on Empirical Methods in Natural Language Processing, 390-400. | [5] | Divoli A., Nakov P., & Hearst M. A. (2012). Do peers see more in a paper than its authors? Advances in Bioinformatics, 2012(2012), 750214. | [6] | Elkiss A., Shen S., Fader A., States D., & Radev D. (2008). Blind men and elephants: What do citation summaries tell us about a research article? Journal of the American Society for Information Science and Technology, 59(1), 51-62. | [7] | Fahad A., Alshatri N., Tari Z., Alamri A., Khalil I., Zomaya A. Y., Foufou S., & Bouras A. (2014). A survey of clustering algorithms for big data: taxonomy and empirical analysis. Emerging Topics in Computing IEEE Transactions on, 2(3), 267-279. | [8] | Fellbaum C.,& Miller, G.(1998).WordNet: An electronic lexical database Cambridge, MA: MIT Press An electronic lexical database .Cambridge, MA: MIT Press. | [9] | Jaidka K., Khoo C., & Na J. C. (2013). Deconstructing human literature reviews - A framework for multi-document summarization. The Workshop on European Natural Language Generation, 127, 125-135. | [10] | Lee D. D. (2000). Algorithms for nonnegative matrix factorization. Advances in Neural Information Processing Systems, 13(6), 556-562. | [11] | Liu X.(2013). Generating metadata for cyberlearning resources through information retrieval and meta-search. Journal of the American Society for Information Science and Technology, 64(4): 771-786. | [12] | Maricic S., Spaventi J., Pavicic L., & Pifat-Mrzljak G. (1998). Citation context versus the frequency counts of citation histories. Journal of the Association for Information Science & Technology, 49(6), 530-540. | [13] | Marujo L., Ribeiro R., Matos D. M. D., Joao P.Neto, Gershman, A., & Carbonell J. (2015). Extending a single-document summarizer to multi-document: a hierarchical approach. Computer Science, 176-181. | [14] | Mikolov T., Le Q. V., & Sutskever I. (2013). Exploiting Similarities among Languages for Machine Translation. Computer Science, 1-10. | [15] | Nenkova A., & McKeown, K. (2001). Automatic summarization. Association for Computational Linguistic, 39th Annual Meeting and 10th Conference of the European Chapter, Proceedings of the Student Research Workshop and Tutorial Abstracts, 5(3), 1-42. | [16] | Osiński S., &Weiss ,D. (2005a). Carrot2: Design of a flexible and efficient web information retrieval framework. Proceedings of the Third International Atlantic Web Intelligence Conference, 439-444. | [17] | Osinski S., &Weiss, D. (2005b). A concept-driven algorithm for clustering search results. IEEE Intelligent Systems, 20(3), 48-54. | [18] | Qazvinian V., &Radev ,D.R. (2008). Scientific paper summarization using citation summary networks. Proceedings of International Conference on Computational Linguistics, 689-696. | [19] | Rada R., Mili H., Bicknell E., & Blettner M. (1989). Development and application of a metric on semantic nets. IEEE Transactions on Systems Man & Cybernetics, 19(1), 17-30. | [20] | Salton G., &Yu C.T. (1973). On the construction of effective vocabularies for information retrieval. Acm Sigplan Notices, 9(3), 48-60. | [21] | Sarkar K., Saraf K., & Ghosh A. (2015). Improving graph based multidocument text summarization using an enhanced sentence similarity measure. Proceedings of IEEE nternational Conference on Recent Trends in Information Systems, 359-365. | [22] | Stefanowski J., &Weiss, D.(2003). Carrot2 and language properties in web search results clustering. Proceedings of the First International Atlantic Web Intelligence Conference, 2663, 240-249. | [23] | Tandon N., & Jain A.(2012). Citation context sentiment analysis for structured summarization of research papers. Proceedings of 35th German Conference on Artificial Intelligence, 1-5. | [24] | Valizadeh M., & Brazdil P., (2015). Density-based graph model summarization: attaining better performance and efficiency. Intelligent Data Analysis, 19(3), 617-629. | [25] | Yang L., Cai X., Pan S., Dai H., & Mu D. (2017). Multi-document summarization based on sentence cluster using non-negative matrix factorization. Journal of Intelligent & Fuzzy Systems, 33(1), 1-13. | [26] | Yang S., Lu W., Yang D., Li X., Wu C., & Wei B. (2016). KeyphraseDS: Automatic generation of survey by exploiting keyphrase information. Neurocomputing, 224, 58-70. | [27] | Yang Y., & Pedersen, J. O. (1997). A Comparative Study on Feature Selection in Text Categorization. Proceedings of the 14th International Conference on Machine Learning, 4(3), 412-420. | [28] | Zhang R., Li W., Gao D., & Ouyang Y. (2013). Automatic twitter topic summarization with speech acts. IEEE Transactions on Audio Speech & Language Processing, 21(3), 649-658. | [29] | Zechner K. (1996). Fast generation of abstracts from general domain text corpora by extracting relevant sentences. Proceedings of the 16th Conference on Computational linguistics, 2, 986-989. |
|