Journal of Data and Information Science ›› 2021, Vol. 6 ›› Issue (1): 154-177.doi: 10.2478/jdis-2021-0006
• Research Papers • Previous Articles Next Articles
Ting Chen1,2,3, Guopeng Li3, Qiping Deng4, Xiaomei Wang3,()
Received:
2020-07-01
Revised:
2020-09-22
Accepted:
2020-10-20
Online:
2021-02-20
Published:
2020-11-30
Contact:
Xiaomei Wang
E-mail:wangxm@casisd.cn
Figure 1.
Three base maps created by OpenOrd with different cutting edges strategies and parameters. A is the map with 47,294 highly cited papers and all 3.6 million co-citation relationships, and OpenOrd cutting edge parameter is 0.8. B is the map with top 15 weighted relationships of each paper, and cutting edge parameter is 0.85. C is the map also with top 15 weighted relationships but cutting edge parameter is 0.9.
Table 1
Models (used in this paper) categorized by building and learning method.
Model | Building context of nodes | Learning method |
---|---|---|
DeepWalk | Truncated Random Walks | Skip-gram & Hierarchical Softmax |
Line | 1-hop and 2-hop Neighbors | Skip-gram & Negative Sampling |
Node2Vec | Biased Truncated Random Walks | Skip-gram & Negative Sampling |
Table 2
Detail of top 10 ESI fronts of each discipline overlaid in Figure 5.
ID&Field | Research front keywords | #paper |
---|---|---|
993, Social sciences, general | Police agency directed randomized field trial; police legitimacy invariant; police legitimacy; police officer body-worn cameras (bwcs) | 30 |
39, Clinical medicine | Triple-negative essential thrombocythemia patients; myeloproliferative neoplasm-associated myelofibrosis;primary myelofibrosis | 50 |
514, Computer science | Multigranulation fuzzy decision-theoretic rough set; triangular fuzzy decision-theoretic rough sets; intuitionistic fuzzy decision-theoretic rough sets; multigranulation decision-theoretic rough sets; | 47 |
108, Physics | Frozen quantum coherence;measuring quantum coherence; genuine quantum coherence; quantum coherence; quantum thermodynamics | 49 |
90, Biology & biochemistry | Reversible m(6)a rna methylation; rna m(6)a methylation; m(6)a rna methylation; m(6)a rna modification controls cell fate transition; viral m(6)a rna methylomes | 42 |
309, Engineering | Particle swarm optimization-based maximum power point tracking algorithm; maximum power point tracking control techniques;maximum power point tracking (mppt) techniques;observe (p&o) maximum power point tracking (mppt) algorithm;maximum power point tracking techniques | 36 |
69, Geosciences | Greenland ice sheet surface mass balance contribution; 1900-2015 greenland ice sheet surface mass balance; potential antarctic ice sheet retreat driven;northeast greenland ice sheet triggered;simple antarctic ice sheet model | 43 |
63, Chemistry | 3d porous crystalline polyimide covalent organic frameworks;crystalline 2d covalent organic frameworks; homochiral 2d porous covalent organic frameworks; large-pore crystalline polyimide covalent organic frameworks;highly crystalline covalent organic frameworks | 45 |
107, Materials science | Equiatomic high-entropy alloy crmnfeconi; equiatomic high-entropy alloys; single-phase high-entropy alloy crmnfeconi; nanocrystalline cocrfemnni high-entropy alloy; single-phase high-entropy alloys | 37 |
71, Space science | Small kepler planets; kepler transit candidates xvii; potentially habitable planets orbiting m dwarfs estimated; earth-size planets orbiting sun-like stars | 31 |
Table 3
Silhouette Coefficient of research fronts on five maps.
Number of RF | Co-citation map A | Co-citation map B | Co-citation map C | N2V & tSNE | DW & tSNE | Line & tSNE |
---|---|---|---|---|---|---|
10 | 0.807 | 0.71 | 0.73 | 0.955 | 0.839 | 0.637 |
50 | 0.633 | 0.58 | 0.6 | 0.721 | 0.543 | 0.438 |
100 | 0.589 | 0.52 | 0.56 | 0.656 | 0.437 | 0.370 |
200 | 0.529 | 0.43 | 0.42 | 0.570 | 0.353 | 0.306 |
500 | 0.407 | 0.29 | 0.29 | 0.438 | 0.193 | 0.190 |
1,000 | 0.302 | 0.18 | 0.27 | 0.313 | 0.047 | 0.054 |
10,096 | -0.227 | -0.26 | -0.26 | -0.279 | -0.469 | -0.455 |
[1] | Bartol, T., Budimir, G., Juznic, P., & Stopar, K. (2016). Mapping and classification of agriculture in Web of Science: Other subject categories and research fields may benefit. Scientometrics, 109(2), 979-996. |
[2] | Bastian, M., Heymann, S., & Jacomy, M. (2009). Gephi: An open source software for exploring and manipulating networks. Third international AAAI conference on weblogs and social media. |
[3] |
Bornmann, L., Leydesdorff, L., Walch-Solimena, C., & Ettl, C. (2011). Mapping excellence in the geography of science: An approach based on Scopus data. Journal of Informetrics, 5(4), 537-546.
doi: 10.1016/j.joi.2011.05.005 |
[4] |
Boyack, K.W., & Klavans, R. (2014). Creation of a highly detailed, dynamic, global model and map of science. Journal of the Association for Information Science and Technology, 65(4), 670-685. doi: 10.1002/asi.22990, URL https://dx.doi.org/10.1002/asi.22990
doi: 10.1002/asi.22990 |
[5] |
Boyack, K.W., Klavans, R., & Börner, K. (2005). Mapping the backbone of science. Scientometrics, 64(3), 351-374.
doi: 10.1007/s11192-005-0255-6 |
[6] |
Boyack, K.W., Newman, D., Duhon, R.J., Klavans, R., Patek, M., Biberstine, J.R., Schijvenaars, B., Skupin, A., Ma, N., & Börner, K. (2011). Clustering More than Two Million Biomedical Publications: Comparing the Accuracies of Nine Text-Based Similarity Approaches. PLoS ONE, 6(3), e18029-e18029. doi: 10.1371/journal.pone.0018029
pmid: 21437291 |
[7] |
Boyack, K.W., Small, H., & Klavans, R. (2013). Improving the accuracy of co-citation clustering using full text. Journal of the American Society for Information Science and Technology, 64(9), 1759-1767. doi: 10.1002/asi.22896
doi: 10.1002/asi.2013.64.issue-9 |
[8] |
Chen, C.M. (1999). Visualising semantic spaces and author co-citation networks in digital libraries. Information Processing & Management, 35(3), 401-420.
doi: 10.1016/S0306-4573(98)00068-5 |
[9] | Chen, T. (2020). Essential Science Indicators highly cited paper co-citation relationships 2018.3. V1. DOI http://www.dx.doi.org/10.11922/sciencedb.00256, http://www.dx.doi.org/10.11922/sciencedb.00256, URL http://www.dx.doi.org/10.11922/sciencedb.00256 |
[10] | Chen, T., Wang, H., & Wang, X. (2020). Detecting Funding Topics Evolutions with Visualization(in Chinese). Data Analysis and Knowledge Discovery, 4(2/3). |
[11] |
van Eck, N.J., & Waltman,, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523-538.
doi: 10.1007/s11192-009-0146-3 pmid: 20585380 |
[12] |
van Eck, N.J., Waltman, L., Noyons, E.C.M., & Buter, R.K. (2010). Automatic term identification for bibliometric mapping. Scientometrics, 82(3), 581-596.
doi: 10.1007/s11192-010-0173-0 pmid: 20234767 |
[13] | Gibson, H., Faith, J., & Vickers, P. (2013). A survey of two-dimensional graph layout techniques for information visualisation. Information Visualization, 12(3-4), 324-357. |
[14] | Gibson, A., & Leskovec,, J. (2016). Node2Vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining, ACM, pp 855-864. |
[15] | Katsurai, M., Ono, S. (2019). TrendNets: Mapping emerging research trends from dynamic co-word networks via sparse representation. Scientometrics, 121(3), 1583-1598. |
[16] | Kruskal, J.B. (1977). Multidimensional scaling and other methods for discovery structure. In: Enslein, K., Ralston, A., & Wilf, H. (eds) Statistical methods for digital computers, Wiley. |
[17] | Kullback, S., & Leibler, R.A. (1951). On Information and Sufficiency. The Annals of Mathematical Statistics, 22(1), 79-86. doi: 10.1214/aoms/1177729694 |
[18] | Le, Q., & Mikolov, T. (2014). Distributed representations of sentences and documents. In Proceedings of the 31st International Conference on Machine Learning, pp 1188-1196. |
[19] | Li, P., Yang, G.L., & Wang, C.Q. (2019). Visual topical analysis of library and information science. Scientometrics, 121, 1753-1791. |
[20] |
Li, W.T., Cerise, J.E., Yang, Y.N., & Han, H. (2017). Application of t-SNE to human genetic data. Journal of Bioinformatics and Computational Biology, 15(4), 1750017-1750017.
pmid: 28718343 |
[21] |
Liu, S., Bremer, P.T., Thiagarajan, J.J., Srikumar, V., Wang, B., Livnat, Y., & Pascucci, V. (2018). Visual Exploration of Semantic Relationships in Neural Word Embeddings. IEEE Transactions on Visualization and Computer Graphics, 24(1), 553-562.
doi: 10.1109/TVCG.2017.2745141 pmid: 28866574 |
[22] | Liu, Z. (1992). Visualizing the intellectual structure in urban studies: A journal co-citation analysis. Scientometrics, 62(3), 385-402. |
[23] | Maaten, L.V.D., & Hinton, G. (2008). Visualizing data using t-SNE. Journal of Machine Learning Research, 9, 2579-2605. |
[24] | Martin, S., Brown, W.M., Klavans, R., & Boyack, K.W. (2011). OpenOrd: An open-source toolbox for large graph layout. International Society for Optics and Photonics, 7868, 786806-786806. |
[25] | Perozzi, B., Al-Rfou, R., & Skiena, S. (2014). Deepwalk: Online learning of social representations. In: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, ACM, pp 701-710. |
[26] |
Pezzotti, N., Lelieveldt, B.P.F., van der Maaten, L., Hollt, T., Eisemann, E., & Vilanova, A. (2017). Approximated and User Steerable tSNE for Progressive Visual Analytics. IEEE Transactions on Visualization and Computer Graphics, 23(7), 1739-1752.
doi: 10.1109/TVCG.2016.2570755 pmid: 28113434 |
[27] | Shen, Z.S., Chen, F.Y., Yang, L.Y., & Wu, J.S. (2019). Node2vec representation for clustering journals and as a possible measure of diversity. Journal of Data and Information Science, 4(2), 79-92. |
[28] | Small, H. (1999). Visualizing science by citation mapping. Journal of the American Society for Information Science, 50(9), 799-813. |
[29] | Small, H., & Griffith, B.C. (1974). The Structure of Scientific Literatures I: Identifying and Graphing Specialties. Science Studies, 4(1), 17-40. |
[30] | Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., & Mei, Q. (2015). Line: Large-scale information network embedding. In: Proceedings of the 24th international conference on world wide web, WWW, pp 1067-1077. |
[31] | Wang, X., Han, T., li, G., Chen, T., & Zhang, X. (2017). Mapping science structure 2017 (in Chinese). Science Press China. |
[32] | White, H.D. (2003). Pathfinder networks and author co-citation analysis: A remapping of paradigmatic information scientists. Journal of the American Society for Information Science, 54(5), 423-434. |
[33] | Zhai, T., & Di, L.Z. (2019). Information mining and visualization of highly cited papers on type-2 diabetes mellitus from ESI. CURRENT SCIENCE, 116(12), 1965. |
[34] | Zhou, Q., & LeydesdorffL. (2016). The normalization of occurrence and Co-occurrence matrices in bibliometrics using Cosinesimilarities and Ochiaicoefficients. Journal of the Association for Information Science and Technology, 67(11), 2805-2814. doi: 10.1002/asi.23603 |
[1] | Hyejin Park, Han Sung Kim, Han Woo Park. A Scientometric Study of Digital Literacy, ICT Literacy, Information Literacy, and Media Literacy [J]. Journal of Data and Information Science, 2021, 6(2): 116-138. |
[2] | Jones Luís Schaefer, Julio Cezar Mairesse Siluk, Ismael Cristofer Baierle, Elpidio Oscar Benitez Nara. A Scientometric Approach to Analyze Scientific Development on Renewable Energy Sources [J]. Journal of Data and Information Science, 2021, 6(1): 87-119. |
[3] | Mudassar Arsalan, Omar Mubin, Abdullah Al Mahmud. Evidence-based Nomenclature and Taxonomy of Research Impact Indicators [J]. Journal of Data and Information Science, 2020, 5(3): 33-56. |
[4] | Jinshan Wu. Infrastructure of Scientometrics:The Big and Network Picture [J]. Journal of Data and Information Science, 2019, 4(4): 1-12. |
[5] | Jane H. Qin, Jean J. Wang, Fred Y. Ye. A Metric Approach to Hot Topics in Biomedicine via Keyword Co-occurrence [J]. Journal of Data and Information Science, 2019, 4(4): 13-25. |
[6] | Carlos Luis González-Valiente, Magda León Santos, Ricardo Arencibia-Jorge. Evolution of the Socio-cognitive Structure of Knowledge Management (1986-2015): An Author Co-citation Analysis [J]. Journal of Data and Information Science, 2019, 4(2): 36-55. |
[7] | Zhesi Shen, Fuyou Chen, Liying Yang, Jinshan Wu. Node2vec Representation for Clustering Journals and as A Possible Measure of Diversity [J]. Journal of Data and Information Science, 2019, 4(2): 79-92. |
[8] | Csomós György† . Factors Influencing Cities’ Publishing Efficiency [J]. Journal of Data and Information Science, 2018, 3(3): 43-80. |
[9] | Jose A. Moral-Munoz, Manuel Arroyo-Morales, Barbara F. Piper, Antonio I. Cuesta-Vargas, Lourdes Díaz-Rodríguez, William C.S. Cho, Enrique Herrera-Viedma, Manuel J. Cobo . Thematic Trends in Complementary and Alternative Medicine Applied in Cancer-Related Symptoms [J]. Journal of Data and Information Science, 2018, 3(2): 1-19. |
[10] | Garner Jon,L. Porter Alan,Leidolf Andreas,Baker Michelle. Measuring and Visualizing Research Collaboration and Productivity [J]. Journal of Data and Information Science, 2018, 3(1): 54-81. |
[11] | Stephen Carley, Alan L. Porter, Ismael Rafols, Loet Leydesdorff. Visualization of Disciplinary Profiles: Enhanced Science Overlay Maps [J]. Journal of Data and Information Science, 2017, 2(3): 68-111. |
[12] | Chen Chaomei. Science Mapping: A Systematic Review of the Literature [J]. Journal of Data and Information Science, 2017, 2(2): 1-40. |
[13] | Shibo HAO, Xuefang ZHU, Guang ZHU & Gang LI. A comparative study of information visualization from the perspective of intellectual base: Using WoS and CSSCI [J]. Journal of Data and Information Science, 2013, 6(2): 47-64. |
[14] | Hongshen PANG. A knowledge discovery method based on analysis of multiple co-occurrence relationships in collections of journal papers [J]. Journal of Data and Information Science, 2012, 5(4): 9-20. |
[15] | CHEN Lixin, LIU Zeyuan & LIANG Liming. A study of the disciplinary structure of mechanics based on the titles of published journal articles in mechanics [J]. Journal of Data and Information Science, 2010, 3(4): 83-98. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||