Ai, S.S., Xiong, H.Q., Li, C.C., Luo, Y.J., Shi, Q., Liu, Y.X., et al. (2019). Profiling chromatin states using single cell itChIP-seq. Nature Cell Biology, 21(9), 1164–1172.
Blei, D.M., Ng, A.Y., & Jordan, M.I. (2003). Latent Dirichlet allocation. Journal of Machine Learning Research, 3(4/5), 993–1022.
Briggs, J.A., Weinreb, C., Wagner, D.E., Megason, S., Peshkin, L., Kirschner, M.W., et al. (2018). The dynamics of gene expression in vertebrate embryogenesis at single cell resolution. Science, 360(6392). pii: eaar5780.
Cao, J., Spielmann, M., Qiu, X., Huang, X., Ibrahim, D.M., Hill, A.J., et al. (2019). The single cell transcriptional landscape of mammalian organogenesis. Nature, 566(7745), 496–502.
Farrell, J.A., Wang, Y., Riesenfeld, S.J., Shekhar, K., Regev, A., & Schier, A.F. (2018). Single cell reconstruction of developmental trajectories during zebrafish embryogenesis. Science, 360(6392). pii: eaar3131.
Griffiths, J.A., Scialdone, A., & Marioni, J.C. (2018). Using single cell genomics to understand developmental processes and cell fate decisions. Molecular System Biology, 14(4), e8046.
Guo, X.Y., Zhang, Y.Y., Zheng, L.T., Zheng, C.H., Song, J.T., Zhang, Q.M., et al. (2018). Global characterization of T cells in non-small-cell lung cancer by single cell sequencing. Nature Medicine, 24(7), 978–985.
Jelodar, H., Wang, Y.L., Yuan, C., Feng, X., Jiang, X.H., Li, Y.C., et al. (2019). Latent Dirichlet allocation (LDA) and topic modeling: models, applications, a survey. Multimedia Tools and Applications, 78(11), 15169–15211.
Junker, J.P., & van Oudenaarden A. (2014). Every cell is special: Genome-wide studies add a new dimension to single cell biology. Cell, 157(1), 8–11.
Lee, L. (2001). On the Eectiveness of the skew divergence for statistical language analysis [C]// Richardson T.S, Jaakkola T.S. In the Proceedings of the English International Workshop on Artificial Intelligence and Statistics. Key West: Society for Artificial Intelligence and Statistics. 65–72.
Lindström, S. (2012). Flow Cytometry and Microscopy as Means of Studying Single Cells: A Short Introductional Overview. In: Lindström, S., & Andersson-Svahn, H. (Ed.), Single cell Analysis. Methods in Molecular Biology (Methods and Protocols), 853 (pp.13–15). Humana Press.
Nicolaisen, J. (2010). Bibli ometrics and citation analysis: From the science citation index to cybermetrics. Journal of the American Society for Information Science and Technology, 61(1), 205–207.
Reece, A., Xia, B.Z., Jiang, Z.L., Noren, B., McBride, R., & Oakey, J. (2016). Microfluidic techniques for high throughput single cell analysis. Current Opinion in Biotechnology, 40, 90–96.
Wang, Q.H., Xiong H.Q., Ai, S.S., Yu, X.H., Liu, Y.X., Zhang, J.J., et al. (2019) CoBATCH for High-Throughput Single cell Epigenomic Profiling. Molecular Cell, 76(1), 206–216.e7.
Wei, W., Shin, Y.S., Xue, M., Matsutani, T., Masui, K., Yang, H., et al. (2016). Single cell Phosphoproteomics Resolves Adaptive Signaling Dynamics and Informs Targeted Combination Therapy in Glioblastoma. Cancer Cell, 29(4), 563–573.
Zhang, L., Yu, X., Zheng, L.T., Zhang, Y.Y., Li, Y.S., Fang, Q., et al. (2018). Lineage tracking reveals dynamic relationships of T cells in colorectal cancer. Nature, 564, 268–272.
Zhang, W., Xu, X.L., Ming, C.H., Mao, Z.J., Shi, J., & Xiang, Y.Q. (2016). Surviving in the dispute: A bibliometric analysis of global GMF-related research, 1995–2014. Scientometrics, 109(1), 359–375.
Zheng, T.L., Wang, J., Wang, Q.H., Nie, C.H., Shi, Z.N., Wang, X.N., et al. (2016). A bibliometric analysis of micro/nano-bubble related research: Current trends, present application, and future prospects. Scientometrics, 109(1), 53–71. |