Journal of Data and Information Science ›› 2021, Vol. 6 ›› Issue (1): 87-119.doi: 10.2478/jdis-2021-0009
• Research Papers • Previous Articles Next Articles
Jones Luís Schaefer1,(), Julio Cezar Mairesse Siluk1, Ismael Cristofer Baierle1, Elpidio Oscar Benitez Nara2
Received:
2020-04-22
Revised:
2020-06-13
Accepted:
2020-09-10
Online:
2021-02-20
Published:
2021-01-20
Contact:
Jones Luís Schaefer
E-mail:engjlschaefer@yahoo.com.br
Table 1
Search filters.
Filter | Wind energy | Photovoltaic energy | Biomass energy |
---|---|---|---|
Document type | Articles | Articles | Articles |
Search in | Title, abstract or keywords | Title, abstract or keywords | Title, abstract or Keywords |
Subject área | Energy; Engineering; Decision Sciences; Business, Management and Accounting; Economics, Econometrics and Finance | Energy; Engineering; Decision Sciences; Business, Management and Accounting; Economics, Econometrics and Finance | Energy; Engineering; Decision Sciences; Business, Management and Accounting; Economics, Econometrics and Finance |
Years | 2005-2019 | 2005-2019 | 2005-2019 |
Search terms | “wind energy” AND “renewable energy | “solar energy” OR “photovoltaic energy” AND “renewable energy” | “biomass energy” AND “renewable energy |
[1] | Abramo, G. (2018). Revisiting the scientometric conceptualization of impact and its measurement. Journal of Informetrics, 12(3), 590-597. https://doi.org/10.1016/j.joi.2018.05.001 |
[2] | Akbarzadeh, A., Johnson, P., & Singh, R. (2009). Examining potential benefits of combining a chimney with a salinity gradient solar pond for production of power in salt affected areas. Solar Energy, 83(8), 1345-1359. https://doi.org/10.1016/j.solener.2009.02.010 |
[3] | Alcaraz, A., Montalà, M., Cortina, J.L., Akbarzadeh, A., Aladjem, C., Farran, A., & Valderrama, C. (2018). Design, construction, and operation of the first industrial salinity-gradient solar pond in Europe: An efficiency analysis perspective. Solar Energy, 164, 316-326. https://doi.org/10.1016/j.solener.2018.02.053 |
[4] |
Arroyo, A., Castro, P., Manana, M., Domingo, R., & Laso, A. (2018). CO2 footprint reduction and efficiency increase using the dynamic rate in overhead power lines connected to wind farms. Applied Thermal Engineering,
doi: 10.1016/j.applthermaleng.2008.01.010 pmid: 32362764 |
[5] | Ayyarao, T.S.L.V. (2019). Modified vector controlled DFIG wind energy system based on barrier function adaptive sliding mode control. Protection and Control of Modern Power Systems, 4,(1), 1-8. |
[6] | Azhari, A.W., Sopian, K., Zaharim, A., & Al Ghoul, M. (2008). A new approach for predicting solar radiation in tropical environment using satellite images - Case study of Malaysia. WSEAS Transactions on Environment and Development, 4(4), 373-378. |
[7] | Baierle, I.C., Schaefer, J.L., Sellitto, M.A., Fava, L.P., Furtado, J.C., & Nara, E.O.B. (2020). Moona software for survey classification and evaluation of criteria to support decision-making for properties portfolio. International Journal of Strategic Property Management, 24(4), 226-236. https://doi.org/10.3846/ijspm.2020.12338 |
[8] | Bakhtyar, B., Saadatian, O., Alghoul, M.A., Ibrahim, Y., & Sopian, K. (2015). Solar electricity market in Malaysia: A review of feed-in tariff policy. Environmental Progress and Sustainable Energy, 34(2), 600-606. https://doi.org/10.1002/ep.12023 |
[9] | Bakhtyar, B., Sopian, K., Zaharim, A., Salleh, E., & Lim, C.H. (2013). Potentials and challenges in implementing feed-in tariff policy in Indonesia and the Philippines. Energy Policy, 60, 418-423. https://doi.org/10.1016/j.enpol.2013.05.034 |
[10] | Battaglini, A., Komendantova, N., Brtnik, P., & Patt, A. (2012). Perception of barriers for expansion of electricity grids in the European Union. Energy Policy, 47, 254-259. https://doi.org/10.1016/j.enpol.2012.04.065 |
[11] | Batty, M., & Gleeson, B. (2003). The geography of scientific citation + The Difference that Planning Makes. Environment and Planning A, 35, 761-770. https://doi.org/10.1068/a3505com |
[12] | Ben Jebli, M., Ben Youssef, S., & Apergis, N. (2019). The dynamic linkage between renewable energy, tourism, CO 2 emissions, economic growth, foreign direct investment, and trade. Latin American Economic Review, 28, 2. https://doi.org/10.1186/s40503-019-0063-7 |
[13] | Benchaabane, Y., Silva, R.E., Ibrahim, H., Ilinca, A., Chandra, A., & Rousse, D.R. (2019). Computer Model for Financial, Environmental and Risk Analysis of a Wind-Diesel Hybrid System with Compressed Air Energy Storage. Energies, 12(21), 4054. https://doi.org/10.3390/en12214054 |
[14] | Bernad, F., Casas, S., Gibert, O., Akbarzadeh, A., Cortina, J.L., & Valderrama, C. (2013). Salinity gradient solar pond: Validation and simulation model. Solar Energy, 98(Part C), 366-374. https://doi.org/10.1016/j.solener.2013.10.004 |
[15] | Biddinika, M.K., Diponegoro, A.M., Ali, R.M., Rosyadi, R.I., Tokimatsu, K., & Takahashi, F. (2017). Survey on readability of online information for upgrading understandability of biomass energy technology. Journal of Material Cycles and Waste Management, 19(3), 1069-1076. https://doi.org/10.1007/s10163-017-0596-2 |
[16] | Börner, K., Chen, C., & Boyack, K.W. (2005). Visualizing knowledge domains. Annual Review of Information Science and Technology, 37(1), 179-255. https://doi.org/10.1002/aris.1440370106 |
[17] |
Börner, K., Klavans, R., Patek, M., Zoss, A.M., Biberstine, J.R., Light, R.P., Larivière, V., & Boyack, K.W. (2012). Design and update of a classification system: The ucsd map of science. PLoS ONE, 7(7), e39464. https://doi.org/10.1371/journal.pone.0039464
pmid: 22808037 |
[18] | Busuttil, A., Krajačić, G., & Duić, N. Energy scenarios for Malta. International Journal of Hydrogen Energy, 33(16), 4235-4246. https://doi.org/10.1016/j.ijhydene.2008.06.010 |
[19] | Cabeza, L.F., Galindo, E., Prieto, C., Barreneche, C., & Inés Fernández, A. (2015). Key performance indicators in thermal energy storage: Survey and assessment. Renewable Energy, 83, 820-827. https://doi.org/10.1016/j.renene.2015.05.019 |
[20] | Cabeza, L.F., Solé, A., Fontanet, X., Barreneche, C., Jové, A., Gallas, M., Prieto, C., & Fernández, A.I. (2017). Thermochemical energy storage by consecutive reactions for higher efficient concentrated solar power plants (CSP): Proof of concept. Applied Energy, 185(Part 1), 836-845. https://doi.org/10.1016/j.apenergy.2016.10.093 |
[21] | Carrington, P., Scott, J., & Wasserman, S. (2005). Models and methods in social network analysis. Cambridge University Press. https://books.google.com.br/books?hl=pt-BR&lr=&id=4Ty5xP_KcpAC&oi=fnd&pg=PR9&dq=%22Models+and+methods+in+social+network+analysis%22&ots=9NJLv7tbJ3&sig=nBeqcDbBSs5PmezJX3DaVorpS00 |
[22] | Chakraborty, S., Senjyu, T., Saber, A.Y., Yona, A., & Funabashi, T. (2009). Optimal thermal unit commitment integrated with renewable energy sources using advanced particle swarm optimization. IEEJ Transactions on Electrical and Electronic Engineering, 4(5), 609-617. https://doi.org/10.1002/tee.20453 |
[23] | Chel, A., & Kaushik, G. (2018). Renewable energy technologies for sustainable development of energy efficient building. Alexandria Engineering Journal, 57(2), 655-669. https://doi.org/10.1016/j.aej.2017.02.027 |
[24] | Chen, C., Li, Y., Song, J., Yang, Z., Kuang, Y., Hitz, E., Jia, C., Gong, A., Jiang, F., Zhu, J.Y., Yang, B., Xie, J., & Hu, L. (2017). Highly Flexible and Efficient Solar Steam Generation Device. Advanced Materials, 29(30), 1701756 https://doi.org/10.1002/adma.201701756 |
[25] | Child, M., Ilonen, R., Vavilov, M., Kolehmainen, M., & Breyer, C. (2019). Scenarios for sustainable energy in Scotland. Wind Energy, 22(5), 666-684. https://doi.org/10.1002/we.2314 |
[26] | Child, M., Nordling, A., & Breyer, C. (2017). Scenarios for a sustainable energy system in the Åland Islands in 2030. Energy Conversion and Management, 137, 49-60. https://doi.org/10.1016/j.enconman.2017.01.039 |
[27] | Cobo, M.J., López-Herrera, A.G., Herrera-Viedma, E., & Herrera, F. (2011a). An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the Fuzzy Sets Theory field. Journal of Informetrics, 5(1), 146-166. https://doi.org/10.1016/j.joi.2010.10.002 |
[28] | Cobo, M.J., López-Herrera, A.G., Herrera-Viedma, E., & Herrera, F. (2011b). Science mapping software tools: Review, analysis, and cooperative study among tools. Journal of the American Society for Information Science and Technology, 62(7), 1382-1402. https://doi.org/10.1002/asi.21525 |
[29] | Cobo, M.J., Lõpez-Herrera, A.G., Herrera-Viedma, E., & Herrera, F. (2012). SciMAT: A new science mapping analysis software tool. Journal of the American Society for Information Science and Technology, 63(8), 1609-1630. https://doi.org/10.1002/asi.22688 |
[30] | Cobo, M.J., Martínez, M.A., Gutiérrez-Salcedo, M., Fujita, H., & Herrera-Viedma, E. (2015). 25 years at Knowledge-Based Systems: A bibliometric analysis. Knowledge-Based Systems, 80, 3-13. https://doi.org/10.1016/j.knosys.2014.12.035 |
[31] | Cook, D., & Holder, L. (2006). Mining graph data. John Wiley and Sons Inc. https://books.google.com.br/books?hl=pt-BR&lr=&id=bHGy0_H0g8QC&oi=fnd&pg=PR7&dq=cook+%22Mining+graph+data%22&ots=FtWbVNf0hQ&sig=H3zgSQPkN4YwbubpOy7kBjiKvTU |
[32] | Da Costa, M.B., Dos Santos, L.M.A.L., Schaefer, J.L., Baierle, I.C., & Nara, E.O.B. (2019). Industry 4.0 technologies basic network identification. Scientometrics, 121(2), 977-994. https://doi.org/10.1007/s11192-019-03216-7 |
[33] | Daghigh, R., Ibrahim, A., Jin, G.L., Ruslan, M.H., & Sopian, K. (2011). Predicting the performance of amorphous and crystalline silicon based photovoltaic solar thermal collectors. Energy Conversion and Management, 52(3), 1741-1747. https://doi.org/10.1016/j.enconman.2010.10.039 |
[34] | De Solla Price, D., & Gürsey, S. (1975). Studies in Scientometrics I Transience and Continuance in Scientific Authorship . Ciência Da Informação, 4(1). |
[35] | Dominković, D.F., Bačeković, I., Ćosić, B., Krajačić, G., Pukšec, T., Duić, N., & Markovska, N. (2016). Zero carbon energy system of South East Europe in 2050. Applied Energy, 184, 1517-1528. https://doi.org/10.1016/j.apenergy.2016.03.046 |
[36] | Du, E., Zhang, N., Hodge, B.M., Kang, C., Kroposki, B., & Xia, Q. (2018). Economic justification of concentrating solar power in high renewable energy penetrated power systems. Applied Energy, 222, 649-661. https://doi.org/10.1016/j.apenergy.2018.03.161 |
[37] |
Du, E., Zhang, N., Hodge, B.M., Wang, Q., Lu, Z., Kang, C., Kroposki, B., & Xia, Q. (2019). Operation of a high renewable penetrated power system with CSP plants: A look-ahead stochastic unit commitment model. IEEE Transactions on Power Systems, 34(1), 140-151. https://doi.org/10.1109/TPWRS.2018.2866486
doi: 10.1109/TPWRS.2018.2866486 |
[38] |
Ducom, G., Gautier, M., Pietraccini, M., Tagutchou, J.P., Lebouil, D., & Gourdon, R. (2020). Comparative analyses of three olive mill solid residues from different countries and processes for energy recovery by gasification. Renewable Energy, 145, 180-189. https://doi.org/10.1016/j.renene.2019.05.116
doi: 10.1016/j.renene.2019.05.116 |
[39] |
Fagiano, L., & Schnez, S. (2017). On the take-off of airborne wind energy systems based on rigid wings. Renewable Energy, 107, 473-488. https://doi.org/10.1016/j.renene.2017.02.023
doi: 10.1016/j.renene.2017.02.023 |
[40] |
Fagiano, Lorenzo., Milanese, M., & Piga, D. (2010). High-altitude wind power generation. IEEE Transactions on Energy Conversion, 25(1), 168-180. https://doi.org/10.1109/TEC.2009.2032582
doi: 10.1109/TEC.2009.2032582 |
[41] |
Fayaz, H., Rahim, N.A., Hasanuzzaman, M., Nasrin, R., & Rivai, A. (2019). Numerical and experimental investigation of the effect of operating conditions on performance of PVT and PVT-PCM. Renewable Energy, 143, 827-841. https://doi.org/10.1016/j.renene.2019.05.041
doi: 10.1016/j.renene.2019.05.041 |
[42] | Garfield, E. (1994). Scientography: Mapping the tracks of science. Contents: Social & Behavioral Sciences, 7(45), 5-10. |
[43] |
Garner, J., Porter, A.L., Leidolf, A., & Baker, M. (2020). Measuring and visualizing research collaboration and productivity. Journal of Data and Information Science, 3(1), 54-81. https://doi.org/10.2478/jdis-2018-0004
doi: 10.2478/jdis-2018-0004 |
[44] |
Gibb, D., Johnson, M., Romaní, J., Gasia, J., Cabeza, L.F., & Seitz, A. (2018). Process integration of thermal energy storage systems - Evaluation methodology and case studies. Applied Energy, 230, 750-760. https://doi.org/10.1016/j.apenergy.2018.09.001
doi: 10.1016/j.apenergy.2018.09.001 |
[45] |
Granovskii, M., Dincer, I., & Rosen, M.A. (2007). Exergetic life cycle assessment of hydrogen production from renewables. Journal of Power Sources, 167(2), 461-471. https://doi.org/10.1016/j.jpowsour.2007.02.031
doi: 10.1016/j.jpowsour.2007.02.031 |
[46] |
Guler, A.T., Waaijer, C.J.F., Mohammed, Y., & Palmblad, M. (2016). Automating bibliometric analyses using Taverna scientific workflows: A tutorial on integrating Web Services. Journal of Informetrics, 10(3), 830-841. https://doi.org/10.1016/j.joi.2016.05.002
doi: 10.1016/j.joi.2016.05.002 |
[47] |
Hacatoglu, K., Dincer, I., & Rosen, M.A. (2011). Exergy analysis of a hybrid solar hydrogen system with activated carbon storage. International Journal of Hydrogen Energy, 36(5), 3273-3282. https://doi.org/10.1016/j.ijhydene.2010.12.034
doi: 10.1016/j.ijhydene.2010.12.034 |
[48] |
Hajibandeh, N., Shafie-khah, M., Osório, G.J., Aghaei, J., & Catalão, J.P.S. (2018). A heuristic multi-objective multi-criteria demand response planning in a system with high penetration of wind power generators. Applied Energy, 212, 721-732. https://doi.org/10.1016/j.apenergy.2017.12.076
doi: 10.1016/j.apenergy.2017.12.076 |
[49] |
Hanel, M., & Escobar, R. (2013). Influence of solar energy resource assessment uncertainty in the levelized electricity cost of concentrated solar power plants in Chile. Renewable Energy, 49, 96-100. https://doi.org/10.1016/j.renene.2012.01.056
doi: 10.1016/j.renene.2012.01.056 |
[50] | Haseeb, M., Abidin, I.S.Z., Hye, Q.M.A., & Hartani, N.H. (2019). The impact of renewable energy on economic well-being of Malaysia: Fresh evidence from auto regressive distributed lag bound testing approach. International Journal of Energy Economics and Policy, 9(1), 269-275. https://doi.org/10.32479/ijeep.7229 |
[51] |
Hassan, A., Wahab, A., Qasim, M.A., Janjua, M.M., Ali, M.A., Ali, H.M., Jadoon, T.R., Ali, E., Raza, A., & Javaid, N. (2020). Thermal management and uniform temperature regulation of photovoltaic modules using hybrid phase change materials-nanofluids system. Renewable Energy, 145, 282-293. https://doi.org/10.1016/j.renene.2019.05.130
doi: 10.1016/j.renene.2019.05.130 |
[52] |
Hodge, B.M., Brancucci Martinez-Anido, C., Wang, Q., Chartan, E., Florita, A., & Kiviluoma, J. (2018). The combined value of wind and solar power forecasting improvements and electricity storage. Applied Energy, 214, 1-15. https://doi.org/10.1016/j.apenergy.2017.12.120
doi: 10.1016/j.apenergy.2017.12.120 |
[53] |
Hu, C., Chen, X., Dai, Q., Wang, M., Qu, L., & Dai, L. (2017). Earth-abundant carbon catalysts for renewable generation of clean energy from sunlight and water. Nano Energy, 41, 367-376. https://doi.org/10.1016/j.nanoen.2017.09.029
doi: 10.1016/j.nanoen.2017.09.029 |
[54] | IRENA. (2018). Renewable Energy and Jobs - Annual Review 2018. In /publications/2018/May/Renewable-Energy-and-Jobs-Annual-Review-2018. https://www.irena.org/publications/2018/May/Renewable-Energy-and-Jobs-Annual-Review-2018 |
[55] |
Jacob, R., Belusko, M., Inés Fernández, A., Cabeza, L.F., Saman, W., & Bruno, F. (2016). Embodied energy and cost of high temperature thermal energy storage systems for use with concentrated solar power plants. Applied Energy, 180, 586-597. https://doi.org/10.1016/j.apenergy.2016.08.027
doi: 10.1016/j.apenergy.2016.08.027 |
[56] |
Khalid, F., Dincer, I., & Rosen, M.A. (2015). Energy and exergy analyses of a solar-biomass integrated cycle for multigeneration. Solar Energy, 112, 290-299. https://doi.org/10.1016/j.solener.2014.11.027
doi: 10.1016/j.solener.2014.11.027 |
[57] |
Kipper, L.M., Furstenau, L.B., Hoppe, D., Frozza, R., & Iepsen, S. (2020). Scopus scientific mapping production in industry 4.0 (2011-2018): a bibliometric analysis. International Journal of Production Research, 58(6), 1605-1627. https://doi.org/10.1080/00207543.2019.1671625
doi: 10.1080/00207543.2019.1671625 |
[58] |
Komendantova, N., Patt, A., Barras, L., & Battaglini, A. (2012). Perception of risks in renewable energy projects: The case of concentrated solar power in North Africa. Energy Policy, 40(1), 103-109. https://doi.org/10.1016/j.enpol.2009.12.008
doi: 10.1016/j.enpol.2009.12.008 |
[59] |
Krajačić, G., Vujanović, M., Duić, N., Kılkış, Ş., Rosen, M.A., & Ahmad Al-Nimr, M. (2018). Integrated approach for sustainable development of energy, water and environment systems. Energy Conversion and Management, 159, 398-412. https://doi.org/10.1016/j.enconman.2017.12.016
doi: 10.1016/j.enconman.2017.12.016 |
[60] |
Kumar, R.S., & Kaliyaperumal, K. (2015). A scientometric analysis of mobile technology publications. Scientometrics, 105, 921-939. https://doi.org/10.1007/s11192-015-1710-7
doi: 10.1007/s11192-015-1710-7 |
[61] |
Leblanc, J., Andrews, J., & Akbarzadeh, A. (2010). Low-temperature solar-thermal multi-effect evaporation desalination systems. International Journal of Energy Research, 34(5), 393-403. https://doi.org/10.1002/er.1642
doi: 10.1002/er.1642 |
[62] | Letcher, T.M. (2018). Why Solar Energy? In A Comprehensive Guide to Solar Energy Systems (pp.3-16). Elsevier. https://doi.org/10.1016/b978-0-12-811479-7.00001-4 |
[63] | Leydesdorff, L., & Persson, O. (2010). Mapping the geography of science: Distribution patterns and networks of relations among cities and institutes. Journal of the American Society for Information Science and Technology, 61(8), 1622-1634. https://doi.org/10.1002/asi.21347 |
[64] |
Light, R.P., Polley, D.E., & Börner, K. (2014). Open data and open code for big science of science studies. Scientometrics, 101, 1535-1551. https://doi.org/10.1007/s11192-014-1238-2
doi: 10.1007/s11192-014-1238-2 |
[65] |
Liu, X., Feng, X., & He, Y. (2019). Rapid discrimination of the categories of the biomass pellets using laser-induced breakdown spectroscopy. Renewable Energy, 143, 176-182. https://doi.org/10.1016/j.renene.2019.04.137
doi: 10.1016/j.renene.2019.04.137 |
[66] |
Longo, M., Foiadelli, F., & Yaïci, W. (2019). Simulation and optimisation study of the integration of distributed generation and electric vehicles in smart residential district. International Journal of Energy and Environmental Engineering, 10(3), 271-285. https://doi.org/10.1007/s40095-019-0301-4
doi: 10.1007/s40095-019-0301-4 |
[67] |
Lopez-Rey, A., Campinez-Romero, S., Gil-Ortego, R., & Colmenar-Santos, A. (2019). Evaluation of supply-demand adaptation of photovoltaic-wind hybrid plants integrated into an urban environment. Energies, 12(9), 1780. https://doi.org/10.3390/en12091780
doi: 10.3390/en12091780 |
[68] | Madrazo, A., González, A., Martínez, R., Domingo, R., Mañana, M., Arroyo, A., Castro, P.B., Silió, D., & Lecuna, R. (2015). Analysis of a real case of ampacity management in a 132 kV network integrating high rates of wind energy. Renewable Energy and Power Quality Journal, 1(13), 797-800. https://doi.org/10.24084/repqj13.513 |
[69] | Madrazo, A., González, A., Martínez, R., Mañana, M., Hervás, E., Arroyo, A., Castro, P.B., & Silió, D. (2013). Increasing grid integration of wind energy by using ampacity techniques. Renewable Energy and Power Quality Journal, 1(11), 1121-1124. https://doi.org/10.24084/repqj11.549 |
[70] | Maleki, A., Rosen, M.A., & Pourfayaz, F. (2017). Optimal operation of a grid-connected hybrid renewable energy system for residential applications. Sustainability (Switzerland), 9(8), 1314. https://doi.org/10.3390/su9081314 |
[71] | Martí-Ballester, C.P. (2019). Do European renewable energy mutual funds foster the transition to a low-carbon economy? Renewable Energy, 143, 1299-1309. https://doi.org/10.1016/j.renene.2019.05.095 |
[72] | Martínez, M.A., Cobo, M.J., Herrera, M., & Herrera-Viedma, E. (2015). Analyzing the Scientific Evolution of Social Work Using Science Mapping. Research on Social Work Practice, 25(2), 257-277. https://doi.org/10.1177/1049731514522101 |
[73] | Mena, R., Escobar, R., Lorca Negrete-Pincetic, M., & Olivares, D. (2019). The impact of concentrated solar power in electric power systems: A Chilean case study. Applied Energy, 235, 258-283. https://doi.org/10.1016/j.apenergy.2018.10.088 |
[74] | Moeller, C., Meiss, J., Mueller, B., Hlusiak, M., Breyer, C., Kastner, M., & Twele, J. (2014). Transforming the electricity generation of the Berlin-Brandenburg region, Germany. Renewable Energy, 72, 39-50. https://doi.org/10.1016/j.renene.2014.06.042 |
[75] | Nara, E.O.B., Schaefer, J.L., de Moraes, J., Tedesco, L.P.C., Furtado, J.C., & Baierle, I.C. (2019). Sourcing research papers on small- and medium-sized enterprises’ competitiveness: An approach based on authors’ networks. Revista Espanola de Documentacion Cientifica, 42(2), e230. https://doi.org/10.3989/redc.2019.2.1602 |
[76] |
Nazri, N.S., Fudholi, A., Ruslan, M.H., & Sopian, K. (2018). Mathematical Modeling of Photovoltaic Thermal-Thermoelectric (PVT-TE) Air Collector. International Journal of Power Electronics and Drive System (IJPEDS), 9(2), 795-802. https://doi.org/10.11591/ijpeds.v9.i2.pp795-802
doi: 10.11591/ijpeds.v9.i2 |
[77] | Newman, M.E.J. (2001a). Scientific collaboration networks. I. Network construction and fundamental results. Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 64(1), 016131. https://doi.org/10.1103/PhysRevE.64.016131 |
[78] | Newman, M.E.J. (2001b). Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 64(1), 016132. https://doi.org/10.1103/PhysRevE.64.016132 |
[79] | Orwig, K.D., Ahlstrom, M.L., Banunarayanan, V., Sharp, J., Wilczak, J.M., Freedman, J., Haupt, S.E., Cline, J., Bartholomy, O., Hamann, H.F., Hodge, B.M., Finley, C., Nakafuji, D., Peterson, J.L., Maggio, D., & Marquis, M. (2015). Recent trends in variable generation forecasting and its value to the power system. IEEE Transactions on Sustainable Energy, 6(3), 924-933. https://doi.org/10.1109/TSTE.2014.2366118 |
[80] | Osório, G.J., Lujano-Rojas, J.M., Matias, J.C.O., & Catalão, J.P.S. (2015). A new scenario generation-based method to solve the unit commitment problem with high penetration of renewable energies. International Journal of Electrical Power and Energy Systems, 64, 1063-1072. https://doi.org/10.1016/j.ijepes.2014.09.010 |
[81] | Othman, M.Y., Ibrahim, A., Jin, G.L., Ruslan, M.H., & Sopian, K. (2013). Photovoltaic-thermal (PV/T) technology - The future energy technology. Renewable Energy, 49, 171-174. https://doi.org/10.1016/j.renene.2012.01.038 |
[82] | Oyedepo, S.O., Adaramola, M.S., & Paul, S.S. (2012). Analysis of wind speed data and wind energy potential in three selected locations in South-East Nigeria. International Journal of Energy and Environmental Engineering, 3(1), 1-11. https://doi.org/10.1186/2251-6832-3-7 |
[83] | Parliament, E. (2009). Directiva 2009/28/CE do Parlamento Europeu e do Conselho. Jornal Oficial Da União Europeia, 47. https://eur-lex.europa.eu/legal-content/PT/TXT/PDF/?uri=CELEX:32009L0028&from=EN |
[84] | Peiró, G., Prieto, C., Gasia, J., Jové, A., Miró, L., & Cabeza, L.F. (2018). Two-tank molten salts thermal energy storage system for solar power plants at pilot plant scale: Lessons learnt and recommendations for its design, start-up and operation. Renewable Energy, 121, 236-248. https://doi.org/10.1016/j.renene.2018.01.026 |
[85] | Pfeifer, A., Krajačić, G., Ljubas, D., & Duić, N. (2019). Increasing the integration of solar photovoltaics in energy mix on the road to low emissions energy system - Economic and environmental implications. Renewable Energy, 143, 1310-1317. https://doi.org/10.1016/j.renene.2019.05.080 |
[86] | Poole, A.D., Barnett, A.M., Boes, E., Weinberg, C.J., Ogden, J.M., Carlson, D.E., & Nitsch, J. (1993) Renewable Energy: Sources for fuels and electricity. Island Press. https://books.google.com.br/books?hl=pt-BR&lr=&id=40XtqVMRxOUC&oi=fnd&pg=PA1&dq=Grubb,+M.+J.,+%26+Meyer,+N.+I.+(1993).+Wind+resources.+Renewable+Energy:+Sources+for+Fuels+and+Electricity,+198.&ots=j0ItF__mPr&sig=DFzX4tTyS4dsxCY_iKyjDOnCRc8 |
[87] | Rasat, M.S.M., Wahab, R., Mohamed, M., Iqbal Ahmad, M., Hazim Mohamad Amini, M., Mohd Nazri Wan Abdul Rahman, W., Khairul Azhar Abdul Razab, M., Ahmad Mohd Yunus, A., Kelantan, M., & Campus, J. (2016). Preliminary study on properties of small diameter wild leucaena leucocephala species as potential biomass energy sources. ARPN Journal of Engineering and Applied Sciences, 11(9). www.arpnjournals.com |
[88] | Ren, C., An, N., Wang, J., Li, L., Hu, B., & Shang, D. (2014). Optimal parameters selection for BP neural network based on particle swarm optimization: A case study of wind speed forecasting. Knowledge-Based Systems, 56, 226-239. https://doi.org/10.1016/j.knosys.2013.11.015 |
[89] | Rezaie, B., Reddy, B.V., & Rosen, M.A. (2018). Exergy Assessment of a Solar-Assisted District Energy System. The Open Fuels & Energy Science Journal, 11, 30. https://doi.org/10.2174/1876973x01811010030 |
[90] | Rodrigues, E.M.G., Osório, G.J., Godina, R., Bizuayehu, A.W., Lujano-Rojas, J.M., Matias, J.C.O., & Catalão, J.P.S. (2015). Modelling and sizing of NaS (sodium sulfur) battery energy storage system for extending wind power performance in Crete Island. Energy, 90 Part 2, 1606-1617. https://doi.org/10.1016/j.energy.2015.06.116 |
[91] | Rosa, C.B., Rediske, G., Rigo, P.D., Wendt, J.F.M., Michels, L., & Siluk, J.C.M. (2018). Development of a computational tool for measuring organizational competitiveness in the photovoltaic power plants. Energies, 11(4). https://doi.org/10.3390/en11040867 |
[92] | Roselli, C., Diglio, G., Sasso, M., & Tariello, F. (2019). A novel energy index to assess the impact of a solar PV-based ground source heat pump on the power grid. Renewable Energy, 143, 488-500. https://doi.org/10.1016/j.renene.2019.05.023 |
[93] |
Ruiz-Cabañas, F.J., Prieto, C., Madina, V., Fernández, A.I., & Cabeza, L.F. (2017). Materials selection for thermal energy storage systems in parabolic trough collector solar facilities using high chloride content nitrate salts. Solar Energy Materials and Solar Cells, 163, 134-147. https://doi.org/10.1016/j.solmat.2017.01.028
doi: 10.1016/j.solmat.2017.01.028 |
[94] | Rukman, N.S.B., Fudholi, A., Taslim, I., Indrianti, M.A., Manyoe, I.N., Lestari, U., & Sopian, K. (2019). Energy and exergy efficiency of water-based photovoltaic thermal (PVT) systems: An overview. International Journal of Power Electronics and Drive Systems, 10(2), 987-994. https://doi.org/10.11591/ijpeds.v10.i2.pp987-994 |
[95] | Sakamoto, R., Senjyu, T., Kaneko, T., Urasaki, N., Takagi, T., & Sugimoto, S. (2008). Output power leveling of wind turbine generator by pitch angle control using H∞ control. Electrical Engineering in Japan (English Translation of Denki Gakkai Ronbunshi), 162(4), 17-24. https://doi.org/10.1002/eej.20657 |
[96] | Salameh, Z., New York, L., & Diego, S. (2014). Renewable Energy System Design. Academic Press. http://elsevier.com/ |
[97] | Sassmannshausen, S.P., & Volkmann, C (2018). The Scientometrics of Social Entrepreneurship and Its Establishment as an Academic Field. Journal of Small Business Management, 56(2), 251-273. https://doi.org/10.1111/jsbm.12254 |
[98] | Schaefer, J.L., Siluk, J.C.M., Carvalho, P.S. de, Renes Pinheiro, J., & Schneider, P.S. (2020). Management Challenges and Opportunities for Energy Cloud Development and Diffusion. Energies, 13(16), 4048. https://doi.org/10.3390/en13164048 |
[99] | Sci2, Tool. (2019). A Tool for Science of Science Research and Practice. https://sci2.cns.iu.edu/user/index.php |
[100] | Senjyu, T., Sakamoto, R., Urasaki, N., Higa, H., Uezato, K., & Funabashi, T. (2006). Output power control of wind turbine generator by pitch angle control using minimum variance control. Electrical Engineering in Japan (English Translation of Denki Gakkai Ronbunshi), 154(2), 10-18. https://doi.org/10.1002/eej.20247 |
[101] | Shahbaz, M., Solarin, S.A., Hammoudeh, S., & Shahzad, S.J.H. (2017). Bounds testing approach to analyzing the environment Kuznets curve hypothesis with structural beaks: The role of biomass energy consumption in the United States. Energy Economics, 68, 548-565. https://doi.org/10.1016/j.eneco.2017.10.004 |
[102] | Sharizal Sirrajudin, M., Sukhairi Mat Rasat, M., Wahab, R., Hazim Mohamad Amini, M., Mohamed, M., Iqbal Ahmad, M., Moktar, J., Azhar Ibrahim, M., Kelantan, M., & Campus, J. (2016). Enhancing the Energy Properties of Fugel Pellets from Oil Palm Fronds of Agricultural Residues by Mixing with Glycerin. 11(9). www.arpnjournals.com |
[103] | Singh, B., Baharin, N.A., Remeli, M.F., Oberoi, A., Date, A., & Akbarzadeh, A. (2017). Experimental Analysis of Thermoelectric Heat Exchanger for Power Generation from Salinity Gradient Solar Pond Using Low-Grade Heat. Journal of Electronic Materials, 46, 2854-2859. https://doi.org/10.1007/s11664-016-5009-0 |
[104] | Singh, R., Tundee, S., & Akbarzadeh, A. (2011). Electric power generation from solar pond using combined thermosyphon and thermoelectric modules. Solar Energy, 85(2), 371-378. https://doi.org/10.1016/j.solener.2010.11.012 |
[105] | Sinha, A., Shahbaz, M., & Balsalobre, D. (2017). Exploring the relationship between energy usage segregation and environmental degradation in N-11 countries. Journal of Cleaner Production, 168, 1217-1229. https://doi.org/10.1016/j.jclepro.2017.09.071 |
[106] | Skillicorn, D. (2007). Understanding complex datasets: Data mining with matrix decompositions. In Understanding Complex Datasets: Data Mining with Matrix Decompositions (1st Editio). https://doi.org/10.1201/9781584888338 |
[107] | Small, H., & Garfield, E. (1985). The geography of science: Disciplinary and national mappings. Journal of Information Science, 11(4), 147-159. https://doi.org/10.1177/016555158501100402 |
[108] | Soltani, R., Mohammadzadeh Keleshtery, P., Vahdati, M., Khoshgoftarmanesh, M.H., Rosen, M.A., & Amidpour, M. (2014). Multi-objective optimization of a solar-hybrid cogeneration cycle: Application to CGAM problem. Energy Conversion and Management, 81, 60-71. https://doi.org/10.1016/j.enconman.2014.02.013 |
[109] | Stolarski, M.J., Szczukowski, S., Tworkowski, J., Krzyzaniak, M., Gulczyński, P., & Mleczek, M. (2013). Comparison of quality and production cost of briquettes made from agricultural and forest origin biomass. Renewable Energy, 57, 20-26. https://doi.org/10.1016/j.renene.2013.01.005 |
[110] | Suarez, J.A., & Luengo, C.A. (2003). Coffee Husk Briquettes: A New Renewable Energy Source. Energy Sources, 25(10), 961-967. https://doi.org/10.1080/00908310303395 |
[111] | Tarfaoui, M., Nachtane, M., & Boudounit, H. (2019). Finite Element Analysis of Composite Offshore Wind Turbine Blades Under Operating Conditions. Journal of Thermal Science and Engineering Applications, 12(1), 011001. https://doi.org/10.1115/1.4042123 |
[112] |
Tokimatsu, K., Konishi, S., Ishihara, K., Tezuka, T., Yasuoka, R., & Nishio, M. (2016). Role of innovative technologies under the global zero emissions scenarios. Applied Energy, 162, 1483-1493. https://doi.org/10.1016/j.apenergy.2015.02.051
doi: 10.1016/j.apenergy.2015.02.051 |
[113] |
Valderrama, C., Gibert, O., Arcal, J., Solano, P., Akbarzadeh, A., Larrotcha, E., & Cortina, J.L. (2011). Solar energy storage by salinity gradient solar pond: Pilot plant construction and gradient control. Desalination, 279(1-3), 445-450. https://doi.org/10.1016/j.desal.2011.06.035
doi: 10.1016/j.desal.2011.06.035 |
[114] | Vazquez, M. de L., Waaub, J.P., & Ilinca, A. (2013). MCDA: Measuring robustness as a tool to address strategic wind farms issues. Green Energy and Technology, 129, 153-182. https://doi.org/10.1007/978-1-4471-5143-2_8 |
[115] | Wang, J., Hu, J., Ma, K., & Zhang, Y. (2015). A self-adaptive hybrid approach for wind speed forecasting. Renewable Energy, 78, 374-385. https://doi.org/10.1016/j.renene.2014.12.074 |
[116] | Wasserman, S., & Faust, K. (1994) Social network analysis: Methods and applications. Cambridge University Press. |
[117] | Whiteman, A., Sohn, H., Esparrago, J., Arkhipova, I., & Elsayed, S. (2018). Renewable Capacity Statistics 2018. In /publications/2018/Mar/Renewable-Capacity-Statistics-2018. https://www.irena.org/publications/2018/Mar/Renewable-Capacity-Statistics-2018 |
[118] | Wu, J. (2019). Infrastructure of Scientometrics: The Big and Network Picture. Journal of Data and Information Science, 4(4), 1-12. https://doi.org/10.2478/jdis-2019-0017 |
[119] | Wuestman, M.L., Hoekman, J., & Frenken, K. (2019). The geography of scientific citations. Research Policy, 48(7), 1771-1780. https://doi.org/10.1016/j.respol.2019.04.004 |
[120] | Xu, H., Wang, C., Dong, K., Luo, R., Yue, Z., & Pang, H. (2020). A study of methods to identify industry-university-research institution cooperation partners based on innovation Chain theory. Journal of Data and Information Science, 3(2), 38-61. https://doi.org/10.2478/jdis-2018-0008 |
[121] | Yang, W., Wang, J., Lu, H., Niu, T., & Du, P. (2019). Hybrid wind energy forecasting and analysis system based on divide and conquer scheme: A case study in China. Journal of Cleaner Production, 222, 942-959. https://doi.org/10.1016/j.jclepro.2019.03.036 |
[122] | Zhang, W., Kleiber, W., Florita, A.R., Hodge, B.M., & Mather, B. (2019). Modeling and simulation of high-frequency solar irradiance. IEEE Journal of Photovoltaics, 9(1), 124-131. https://doi.org/10.1109/JPHOTOV.2018.2879756 |
[123] |
Zhang, W., Maleki, A., Rosen, M.A., & Liu, J. (2018). Optimization with a simulated annealing algorithm of a hybrid system for renewable energy including battery and hydrogen storage. Energy, 163, 191-207. https://doi.org/10.1016/j.energy.2018.08.112
doi: 10.1016/j.energy.2018.08.112 |
[1] | Hyejin Park, Han Sung Kim, Han Woo Park. A Scientometric Study of Digital Literacy, ICT Literacy, Information Literacy, and Media Literacy [J]. Journal of Data and Information Science, 2021, 6(2): 116-138. |
[2] | Ting Chen, Guopeng Li, Qiping Deng, Xiaomei Wang. Using Network Embedding to Obtain a Richer and More Stable Network Layout for a Large Scale Bibliometric Network [J]. Journal of Data and Information Science, 2021, 6(1): 154-177. |
[3] | Mudassar Arsalan, Omar Mubin, Abdullah Al Mahmud. Evidence-based Nomenclature and Taxonomy of Research Impact Indicators [J]. Journal of Data and Information Science, 2020, 5(3): 33-56. |
[4] | Jinshan Wu. Infrastructure of Scientometrics:The Big and Network Picture [J]. Journal of Data and Information Science, 2019, 4(4): 1-12. |
[5] | Csomós György† . Factors Influencing Cities’ Publishing Efficiency [J]. Journal of Data and Information Science, 2018, 3(3): 43-80. |
[6] | Garner Jon,L. Porter Alan,Leidolf Andreas,Baker Michelle. Measuring and Visualizing Research Collaboration and Productivity [J]. Journal of Data and Information Science, 2018, 3(1): 54-81. |
[7] | Stephen Carley, Alan L. Porter, Ismael Rafols, Loet Leydesdorff. Visualization of Disciplinary Profiles: Enhanced Science Overlay Maps [J]. Journal of Data and Information Science, 2017, 2(3): 68-111. |
[8] | CHEN Lixin, LIU Zeyuan & LIANG Liming. A study of the disciplinary structure of mechanics based on the titles of published journal articles in mechanics [J]. Journal of Data and Information Science, 2010, 3(4): 83-98. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||