Journal of Data and Information Science ›› 2021, Vol. 6 ›› Issue (4): 36-61.doi: 10.2478/jdis-2021-0028
• Research Papers • Previous Articles Next Articles
Vicente P. Guerrero-Bote1,†(), Henk F. Moed2, Félix Moya-Anegón3
Received:
2021-03-05
Revised:
2021-05-06
Accepted:
2021-06-03
Online:
2021-11-20
Published:
2021-06-16
Contact:
Vicente P. Guerrero-Bote
E-mail:guerrero@unex.es
Table 1
Patent citation based indicators by designated country/region.
Designated country/region | # Patent Families | Families with cites to papers (%) | # Pat Fam cites to papers | Avg cites to papers per Pat Fam | Weighted avg GDP share | Avg cites to papers per Pat Fam with ≥1 cites | Pat Fam with filing year ≥2003 (%) | Pat Fam cites to papers (%) | Weighted cites to papers (%) |
---|---|---|---|---|---|---|---|---|---|
United States | 5400857 | 11.65 | 3533076 | 0.65 | 0.234 | 33.29 | 22.47 | 81.15 | 45.91 |
China | 8571905 | 4.24 | 1463274 | 0.17 | 0.108 | 33.12 | 35.66 | 33.61 | 12.50 |
Germany | 2408775 | 15.79 | 2158516 | 0.90 | 0.052 | 35.02 | 10.02 | 49.58 | 6.18 |
Japan | 5096385 | 4.65 | 1410294 | 0.28 | 0.079 | 38.61 | 21.20 | 32.39 | 5.88 |
United Kingdom | 2037468 | 18.02 | 2136675 | 1.05 | 0.041 | 35.47 | 8.48 | 49.08 | 4.72 |
France | 1887911 | 19.15 | 2105069 | 1.12 | 0.040 | 35.66 | 7.85 | 48.35 | 4.47 |
Italy | 1832796 | 19.28 | 2085714 | 1.14 | 0.031 | 35.94 | 7.62 | 47.91 | 3.49 |
Spain | 1762192 | 20.08 | 2086719 | 1.18 | 0.021 | 35.92 | 7.33 | 47.93 | 2.28 |
Netherlands | 1753318 | 20.02 | 2078575 | 1.19 | 0.013 | 36.03 | 7.29 | 47.74 | 1.37 |
Turkey | 1742792 | 20.05 | 2074734 | 1.19 | 0.011 | 36.08 | 7.25 | 47.66 | 1.22 |
Canada | 513166 | 25.89 | 1111076 | 2.17 | 0.024 | 47.31 | 2.13 | 25.52 | 0.96 |
Switzerland | 1745305 | 20.05 | 2076016 | 1.19 | 0.009 | 36.06 | 7.26 | 47.69 | 0.95 |
Sweden | 1748215 | 20.01 | 2075724 | 1.19 | 0.008 | 36.07 | 7.27 | 47.68 | 0.82 |
Belgium | 1732148 | 20.18 | 2075083 | 1.20 | 0.007 | 36.08 | 7.21 | 47.66 | 0.78 |
South Korea | 2348083 | 5.96 | 815412 | 0.35 | 0.018 | 41.86 | 9.77 | 18.73 | 0.78 |
Poland | 1707430 | 20.20 | 2059367 | 1.21 | 0.007 | 36.21 | 7.10 | 47.30 | 0.74 |
Austria | 1742992 | 20.07 | 2075891 | 1.19 | 0.006 | 36.07 | 7.25 | 47.68 | 0.65 |
Norway | 1264904 | 22.10 | 1772202 | 1.40 | 0.006 | 38.36 | 5.26 | 40.71 | 0.55 |
Denmark | 1740152 | 20.09 | 2076218 | 1.19 | 0.005 | 36.08 | 7.24 | 47.69 | 0.52 |
Brazil | 296790 | 20.85 | 478260 | 1.61 | 0.029 | 47.00 | 1.23 | 10.99 | 0.52 |
Australia | 446278 | 21.88 | 857725 | 1.92 | 0.018 | 49.69 | 1.86 | 19.70 | 0.52 |
Greece | 1731130 | 20.19 | 2074796 | 1.20 | 0.004 | 36.08 | 7.20 | 47.66 | 0.45 |
Finland | 1741247 | 20.10 | 2075883 | 1.19 | 0.004 | 36.07 | 7.24 | 47.68 | 0.41 |
Ireland | 1730187 | 20.20 | 2074865 | 1.20 | 0.004 | 36.08 | 7.20 | 47.66 | 0.41 |
Portugal | 1728495 | 20.23 | 2076124 | 1.20 | 0.003 | 36.08 | 7.19 | 47.69 | 0.37 |
Czech Republic | 1734030 | 20.18 | 2075923 | 1.20 | 0.003 | 36.06 | 7.21 | 47.68 | 0.32 |
Russian Federation | 534368 | 7.92 | 275369 | 0.52 | 0.025 | 43.57 | 2.22 | 6.33 | 0.31 |
Romania | 1733753 | 20.15 | 2074321 | 1.20 | 0.003 | 36.09 | 7.21 | 47.65 | 0.27 |
Table 2
Patent citation according to document type of the cited paper.
Document type | # Patent families | Avg cites to papers | Avg refs in patents | Avg cites to papers (GDP-based weighting) | Avg cites to papers (fractional GDP-based weighting) |
---|---|---|---|---|---|
Article | 670831 | 0.008 | 38.9 | 0.020 | 0.0023 |
Conference Paper | 340577 | 0.018 | 17.4 | 0.025 | 0.0048 |
Review | 177172 | 0.012 | 47.1 | 0.018 | 0.0019 |
Short Survey | 24580 | 0.020 | 48.1 | 0.018 | 0.0013 |
Table 3
Patent citation according to publication year of the cited paper.
Year | # Patent families | Avg cites to papers | Avg refs in patents | Avg cites to papers (GDP-based weighting) | Avg cites to papers (fractional GDP-based weighting) |
---|---|---|---|---|---|
2003 | 230308 | 0.019 | 31.49 | 0.0218 | 0.00400 |
2004 | 232905 | 0.019 | 33.77 | 0.0212 | 0.00350 |
2005 | 229644 | 0.019 | 35.01 | 0.0208 | 0.00318 |
2006 | 214822 | 0.019 | 35.43 | 0.0203 | 0.00292 |
2007 | 205747 | 0.019 | 37.53 | 0.0202 | 0.00278 |
2008 | 192682 | 0.019 | 39.03 | 0.0201 | 0.00261 |
2009 | 177198 | 0.019 | 39.74 | 0.0195 | 0.00255 |
2010 | 160483 | 0.019 | 40.16 | 0.0193 | 0.00249 |
2011 | 140461 | 0.019 | 41.07 | 0.0191 | 0.00244 |
2012 | 116753 | 0.018 | 42.90 | 0.0189 | 0.00233 |
2013 | 87978 | 0.016 | 46.07 | 0.0188 | 0.00207 |
2014 | 61586 | 0.014 | 42.73 | 0.0186 | 0.00178 |
2015 | 38225 | 0.011 | 39.68 | 0.0185 | 0.00134 |
2016 | 18082 | 0.006 | 42.64 | 0.0189 | 0.00064 |
2017 | 6046 | 0.002 | 42.45 | 0.0202 | 0.00022 |
2018 | 806 | 0.000 | 38.90 | 0.0191 | 0.00003 |
Table 4
Patent citation according to Scientific Area of the cited paper.
Scientific Area | # Patent families | Avg cites to papers | Avg refs in patents | Avg cites to papers (GDP-based weighting) | Avg cites to papers (fractional GDP-based weighting) |
---|---|---|---|---|---|
Computer Science | 251649 | 0.019 | 16.10 | 0.025 | 0.00525 |
Engineering | 394749 | 0.018 | 21.55 | 0.024 | 0.00466 |
Materials Science | 228670 | 0.018 | 23.88 | 0.024 | 0.00428 |
Physics and Astronomy | 204802 | 0.017 | 24.03 | 0.025 | 0.00401 |
Energy | 56034 | 0.020 | 15.61 | 0.022 | 0.00395 |
Mathematics | 111652 | 0.021 | 18.10 | 0.024 | 0.00386 |
Chemistry | 241128 | 0.015 | 27.28 | 0.020 | 0.00350 |
Chemical Engineering | 154459 | 0.017 | 33.27 | 0.020 | 0.00309 |
Decision Sciences | 11859 | 0.021 | 13.79 | 0.028 | 0.00280 |
Health Professions | 21004 | 0.017 | 29.71 | 0.021 | 0.00247 |
Environmental Science | 51047 | 0.015 | 24.88 | 0.020 | 0.00230 |
Pharmacology, Toxicology and Pharmaceutics | 120068 | 0.011 | 40.29 | 0.018 | 0.00227 |
Agricultural and Biological Sciences | 78973 | 0.012 | 34.36 | 0.018 | 0.00193 |
Dentistry | 4080 | 0.011 | 28.90 | 0.019 | 0.00192 |
Biochemistry, Genetics and Molecular Biology | 271492 | 0.007 | 45.62 | 0.018 | 0.00187 |
Earth and Planetary Sciences | 19357 | 0.009 | 15.67 | 0.022 | 0.00172 |
Medicine | 270703 | 0.006 | 46.07 | 0.018 | 0.00164 |
Multidisciplinary | 67184 | 0.017 | 55.33 | 0.019 | 0.00161 |
Immunology and Microbiology | 94414 | 0.009 | 46.12 | 0.018 | 0.00160 |
Business, Management and Accounting | 10229 | 0.010 | 11.89 | 0.030 | 0.00154 |
Veterinary | 10619 | 0.012 | 32.96 | 0.018 | 0.00153 |
Neuroscience | 43846 | 0.011 | 55.51 | 0.019 | 0.00141 |
Nursing | 13688 | 0.011 | 54.48 | 0.018 | 0.00132 |
Arts and Humanities | 37896 | 0.015 | 50.43 | 0.021 | 0.00128 |
Social Sciences | 22800 | 0.007 | 19.65 | 0.025 | 0.00100 |
Economics, Econometrics and Finance | 2044 | 0.004 | 11.76 | 0.034 | 0.00062 |
Psychology | 6026 | 0.006 | 63.15 | 0.021 | 0.00059 |
Table 5
Size-dependent indicators of the 28 top-ranked %TFO countries/regions.
Country/Region | %Families | %Output | %BF | %Exc10 | %Exc1 | %Fam.Cit. | %TFO |
---|---|---|---|---|---|---|---|
United States | 22.47 | 24.25 | 36.37 | 37.76 | 46.45 | 43.74 | 36.88 |
China | 35.66 | 14.05 | 11.48 | 13.09 | 13.58 | 6.68 | 14.32 |
Germany | 10.02 | 6.13 | 8.32 | 8.71 | 10.05 | 7.93 | 8.31 |
Japan | 21.20 | 5.21 | 4.80 | 4.59 | 4.10 | 7.64 | 7.83 |
United Kingdom | 8.48 | 7.05 | 10.85 | 11.23 | 14.03 | 7.19 | 6.50 |
France | 7.85 | 4.30 | 5.57 | 5.86 | 6.56 | 4.59 | 4.74 |
South Korea | 9.77 | 2.50 | 2.53 | 2.71 | 2.65 | 3.51 | 4.56 |
Canada | 2.13 | 3.66 | 5.50 | 5.76 | 7.16 | 4.25 | 4.40 |
Italy | 7.62 | 3.65 | 5.01 | 5.26 | 5.82 | 3.27 | 3.29 |
India | 0.23 | 3.80 | 3.06 | 2.89 | 2.52 | 1.53 | 2.74 |
Netherlands | 7.29 | 2.02 | 3.55 | 3.90 | 5.22 | 2.64 | 2.56 |
Spain | 7.33 | 2.97 | 3.71 | 3.98 | 4.41 | 2.19 | 2.49 |
Switzerland | 7.26 | 1.50 | 2.70 | 2.91 | 4.11 | 2.48 | 2.48 |
Australia | 1.86 | 2.97 | 4.52 | 4.83 | 6.05 | 2.22 | 2.36 |
Chinese Taiwan | 2.74 | 1.44 | 1.43 | 1.58 | 1.34 | 1.59 | 2.19 |
Sweden | 7.27 | 1.33 | 2.16 | 2.31 | 2.93 | 1.70 | 1.65 |
Belgium | 7.21 | 1.12 | 1.81 | 1.94 | 2.58 | 1.47 | 1.48 |
Singapore | 0.31 | 0.66 | 1.11 | 1.25 | 1.79 | 0.97 | 1.33 |
Denmark | 7.24 | 0.83 | 1.49 | 1.59 | 2.18 | 1.03 | 1.12 |
Austria | 7.25 | 0.82 | 1.23 | 1.27 | 1.63 | 1.05 | 1.10 |
Israel | 0.32 | 0.75 | 1.10 | 1.15 | 1.41 | 1.18 | 1.03 |
Finland | 7.24 | 0.69 | 1.06 | 1.10 | 1.33 | 0.83 | 1.03 |
Chinese Hong Kong | 0.30 | 0.69 | 1.13 | 1.31 | 1.71 | 0.79 | 1.00 |
Brazil | 1.23 | 2.14 | 1.84 | 1.66 | 1.55 | 0.75 | 0.92 |
Russian Federation | 2.22 | 2.12 | 1.36 | 1.06 | 1.04 | 0.60 | 0.78 |
Poland | 7.10 | 1.41 | 1.23 | 1.07 | 1.15 | 0.59 | 0.76 |
Norway | 5.26 | 0.67 | 1.08 | 1.08 | 1.37 | 0.51 | 0.72 |
Iran | 0.00 | 1.28 | 1.16 | 1.28 | 1.17 | 0.33 | 0.65 |
Figure 1.
Size-dependent indicators of the 12 countries with greatest Technical Force. Percentages relative to the global total. % Families: Percentage of PATSTAT patent families with filing year 2003 or later applying for protection in the country/region. % Output: Percentage of scientific papers indexed in Scopus. % BF: Brute Force percentage, i.e., %Output × Normalized Impact (NI). % Exc10: Percentage of scientific papers of excellence (Top 10%). % Exc1: Percentage of scientific papers of excellence (Top 1%). % Fam. Cit: Percentage of patent family citations received. % TFO: Percentage of Technological Force.
Table 6
Pearson correlation matrix between the size-dependent indicators for the 40 countries/regions with the greatest scientific output.
%Families | %Output | %BF | %Exc10 | %Exc1 | %Fam.Cit. | %TFO | |
---|---|---|---|---|---|---|---|
%Families | 1 | 0.72 | 0.60 | 0.61 | 0.58 | 0.55 | 0.68 |
%Output | 0.72 | 1 | 0.97 | 0.97 | 0.95 | 0.92 | 0.987 |
%BF | 0.60 | 0.97 | 1 | 0.99 | 0.99 | 0.98 | 0.98 |
%Exc10 | 0.61 | 0.97 | 0.99 | 1 | 0.99 | 0.97 | 0.98 |
%Exc1 | 0.58 | 0.95 | 0.99 | 0.99 | 1 | 0.97 | 0.97 |
%Fam.Cit. | 0.54 | 0.92 | 0.98 | 0.97 | 0.97 | 1 | 0.97 |
%TFO | 0.68 | 0.98 | 0.98 | 0.98 | 0.97 | 0.97 | 1 |
Table 7
Size-independent indicators of the 28 top-ranked %TFO countries/regions.
Country/Region | Fam.Rel. | %Q1 | NI | %Exc10 | %Exc1 | Avg.Fam.Cit. | TI |
---|---|---|---|---|---|---|---|
United States | 2.99 | 1.38 | 1.50 | 1.68 | 2.24 | 1.98 | 1.55 |
China | 2.97 | 0.83 | 0.82 | 1.00 | 1.13 | 0.46 | 0.92 |
Germany | 7.14 | 1.24 | 1.36 | 1.53 | 1.92 | 1.35 | 1.32 |
Japan | 5.23 | 1.09 | 0.92 | 0.95 | 0.92 | 1.47 | 1.40 |
United Kingdom | 6.00 | 1.37 | 1.54 | 1.72 | 2.33 | 1.17 | 0.98 |
France | 9.69 | 1.26 | 1.30 | 1.47 | 1.79 | 1.11 | 1.06 |
South Korea | 6.44 | 1.13 | 1.01 | 1.17 | 1.24 | 1.38 | 1.67 |
Canada | 4.17 | 1.39 | 1.50 | 1.69 | 2.29 | 1.25 | 1.20 |
Italy | 11.14 | 1.25 | 1.37 | 1.55 | 1.87 | 0.95 | 0.88 |
India | 0.18 | 0.70 | 0.81 | 0.82 | 0.78 | 0.41 | 0.69 |
Netherlands | 20.03 | 1.55 | 1.76 | 2.08 | 3.04 | 1.40 | 1.26 |
Spain | 13.70 | 1.24 | 1.25 | 1.44 | 1.74 | 0.77 | 0.81 |
Switzerland | 26.89 | 1.49 | 1.81 | 2.09 | 3.21 | 1.75 | 1.62 |
Australia | 3.78 | 1.38 | 1.52 | 1.75 | 2.39 | 0.81 | 0.80 |
Chinese Taiwan | 5.22 | 1.20 | 0.99 | 1.18 | 1.08 | 1.09 | 1.40 |
Sweden | 30.30 | 1.52 | 1.63 | 1.87 | 2.58 | 1.34 | 1.20 |
Belgium | 36.04 | 1.42 | 1.62 | 1.87 | 2.71 | 1.39 | 1.30 |
Singapore | 4.02 | 1.34 | 1.69 | 2.06 | 3.20 | 1.54 | 1.97 |
Denmark | 48.57 | 1.54 | 1.80 | 2.07 | 3.09 | 1.32 | 1.33 |
Austria | 48.83 | 1.27 | 1.50 | 1.66 | 2.32 | 1.35 | 1.30 |
Israel | 4.36 | 1.46 | 1.47 | 1.66 | 2.20 | 1.67 | 1.35 |
Finland | 58.69 | 1.38 | 1.54 | 1.73 | 2.27 | 1.25 | 1.44 |
Chinese Hong Kong | 3.53 | 1.39 | 1.64 | 2.06 | 2.92 | 1.20 | 1.41 |
Brazil | 3.33 | 0.88 | 0.86 | 0.84 | 0.85 | 0.36 | 0.40 |
Russian Fed. | 2.30 | 0.49 | 0.64 | 0.54 | 0.58 | 0.28 | 0.33 |
Poland | 28.16 | 0.79 | 0.87 | 0.82 | 0.95 | 0.42 | 0.50 |
Norway | 47.68 | 1.37 | 1.60 | 1.73 | 2.37 | 0.81 | 1.07 |
Iran | 0.00 | 0.74 | 0.91 | 1.08 | 1.07 | 0.25 | 0.47 |
Figure 3.
Size-independent indicators of the 12 countries with greatest Technical Force. All indicators are relative to the global average. % Q1: Percentage of scientific papers in Q1. NI: Normalized Impact. % Exc10: Percentage of scientific papers of excellence (Top 10%). % Exc1: Percentage of scientific papers of excellence (Top 1%). Fam. Cit. Avg.: Average number of patent family citations per paper. TI: Technological Impact.
Table 8
Pearson correlation matrix between size-independent indicators for the 40 countries/regions with the greatest scientific output.
Fam.Rel. | %Q1 | NI | %Exc10 | %Exc1 | Avg.Fam.Cit. | TI | |
---|---|---|---|---|---|---|---|
Fam.Rel. | 1 | 0.20 | 0.25 | 0.18 | 0.21 | 0.08 | -0.00 |
%Q1 | 0.20 | 1 | 0.92 | 0.92 | 0.86 | 0.83 | 0.74 |
NI | 0.25 | 0.92 | 1 | 0.99 | 0.98 | 0.74 | 0.69 |
%Exc10 | 0.18 | 0.92 | 0.99 | 1 | 0.98 | 0.75 | 0.73 |
%Exc1 | 0.21 | 0.86 | 0.98 | 0.98 | 1 | 0.70 | 0.69 |
Avg.Fam.Cit. | 0.08 | 0.83 | 0.74 | 0.75 | 0.70 | 1 | 0.90 |
TI | -0.00 | 0.74 | 0.69 | 0.73 | 0.69 | 0.90 | 1 |
Figure 4.
Scatter plot of Technological Impact vs Scientific Impact of the 28 countries/regions with the highest values of TFO. The circumferences correspond to: Technological Force (the outer thin circumference), Excellence 10 (thick circumference), the number of patent family citations (the inner thin circumference).
[1] |
Ahmadpoor, M., & Jones, B.F. (2017). The dual frontier: Patented inventions and prior scientific advance. Science, 357(6351), 583-587.
doi: 10.1126/science.aam9527 pmid: 28798128 |
[2] |
Archambault, E., Campbell, D., Gingras, Y., & Larivière, V. (2009). “Comparing bibliometric statistics obtained from the Web of Science and Scopus”. Journal of the American Society for Information Science and Technology, 60 (7), 1320-1326. https://doi.org/10.1002/asi.21062
doi: 10.1002/asi.v60:7 |
[3] | Bryan, K.A., Ozcan, Y., & Sampat, B. (2020). In-text patent citations: A user’s guide. Research Policy, 49(4), 103946. |
[4] |
Callaert, J., Pellens, M., & Van Looy, B. (2014). Sources of inspiration? Making sense of scientific references in patents. Scientometrics, 98(3), 1617-1629.
doi: 10.1007/s11192-013-1073-x |
[5] | Coffano, M., & Tarasconi, G. (2014). Crios—Patstat database: Sources, contents and access rules. Center for Research on Innovation, Organization and Strategy, Crios Working Paper n. 1. https://ssrn.com/abstract=2404344 (accessed: 01/06/2020) . https://doi.org/10.2139/ssrn.2404344 |
[6] | Derwent. (2007) World Patents Index—Derwent patentee codes, Revised edition 8. Thomson Corporation. Leuven Manual. ISBN: 0 901157 38 4. http://ips.clarivate.com/m/pdfs/mgr/patenteecodes.pdf |
[7] | European Patent, Office. (2019). Data catalog Patstat global. Versión 5.13. EPO Patstat customers. https://www.epo.org |
[8] |
Gorraiz, J., Gumpenberger, C., & Wieland, M. (2011). “Galton 2011 revisited: A bibliometric journey in the footprints of a universal genius”. Scientometrics, 88(2), 627-652. https://doi.org/10.1007/s11192-011-0393-y
doi: 10.1007/s11192-011-0393-y |
[9] | Guerrero-Bote, V.P., & Moya-Anegón, F. (2015). “Analysis of scientific production in food science from 2003 to 2013”. Journal of food science, 88(12), R2619-R2626. https://doi.org/10.1111/1750-3841.13108 |
[10] | Guerrero-Bote, V.P., Sánchez-Jiménez, R., & Moya-Anegón, F. (2019). “The citation from patents to scientific output revisited: A new approach to Patstat / Scopus matching”. El profesional de la información, 28(4), e280401. https://doi.org/10.3145/epi.2019.jul.01 |
[11] | Hane, P.J. (2004). “Elsevier announces Scopus service”. Information today. http://newsbreaks.infotoday.com/nbreader.asp?ArticleID=16494 (accessed: 01/06/2020). |
[12] | Hinze, S., & Schmoch, U. (2004). Opening the black box. In: Moed, H.F., Glänzel, W., and Schmoch, U. (2004) (eds.). Handbook of quantitative science and technology research. The use of publication and patent statistics in studies of S&T systems. Dordrecht (the Netherlands): Kluwer Academic Publisher, 215-235. |
[13] |
Jacsó, P. (2011). “The h-index, h-core citation rate and the bibliometric profile of the Scopus database”. Online information review, 35(3), 492-501. https://doi.org/10.1108/14684521111151487
doi: 10.1108/14684521111151487 |
[14] |
Jefferson, O.A., Jaffe, A., Ashton, D., Warren, B., Koellhofer, D., Dulleck, U., Bilder, G., Ballagh, A., Moe, J., DiCuccio, M., Ward, K., Bilder, G., Dolby, K., & Jefferson, R.A. (2018). “Mapping the global influence of published research on industry and innovation”. Nature biotechnology, 36(1), 31-39. https://doi.org/10.1038/nbt0818-772a
doi: 10.1038/nbt.4049 pmid: 29319684 |
[15] |
Kang, B., & Tarasconi, G. (2016). “Patstat revisited: Suggestions for better usage”. World patent information, 46, 56-63. https://doi.org/10.1016/j.wpi.2016.06.001
doi: 10.1016/j.wpi.2016.06.001 |
[16] | Leydesdorff, L., Moya Anegón, F., & Guerrero-Bote, V.P. (2010). “Journal maps on the basis of Scopus data: A comparison with the Journal Citation Reports of the ISI”. Journal of the American Society for Information Science and Technology, 61(2), 352-369. https://doi.org/10.1002/asi.21250 |
[17] |
Lissoni, F. (2012). “Academic patenting in Europe: An overview of recent research and new perspectives”. World patent information, 34(3), 197-205. https://doi.org/10.1016/j.wpi.2012.03.002
doi: 10.1016/j.wpi.2012.03.002 |
[18] | Lotti, F., & Marin, G. (2013). “Matching of Patstat applications to AIDA firms: Discussion of the methodology and results”. Bank of Italy occasional paper, n. 166. https://ssrn.com/abstract=2283111 (accessed: 01/06/2020) . https://doi.org/10.2139/ssrn.2283111 |
[19] |
Lundberg, J. (2007). “Lifting the crown—citation z-score”. Journal of Informetrics, 1(2), 145-154. https://doi.org/10.1016/j.joi.2006.09.007
doi: 10.1016/j.joi.2006.09.007 |
[20] | Magerman, T., Van-Looy, B., & Song, X.Y. (2006). Data production methods for harmonized patent statistics: Patentee name standardization. Technical report, K.U. Leuven. https://ec.europa.eu/eurostat/documents/3888793/5836029/KS-AV-06-002-EN.PDF (accessed: 01/06/2020). |
[21] |
Maraut, S., & Martínez, C. (2014). “Identifying author-inventors from Spain: Methods and a first insight into results”. Scientometrics, 101(1), 445-476. https://doi.org/10.1007/s11192-014-1409-1
doi: 10.1007/s11192-014-1409-1 |
[22] | Martínez, C. (2011). “Patent families: When do different definitions really matter?”, Scientometrics, v. 86, pp. 39-63. https://doi.org/10.1007/s11192-010-0251-3 |
[23] |
Moya-Anegón, F., Chinchilla-Rodríguez, Z., Vargas-Quesada, B., Corera-Álvarez, E., Muñoz-Fernández, F.J., González-Molina, A., & Herrero-Solana, V. (2007). “Coverage analysis of Scopus: A journal metric approach”. Scientometrics, 73(1), 53-78. https://doi.org/10.1007/s11192-007-1681-4
doi: 10.1007/s11192-007-1681-4 |
[24] |
Moya-Anegón, F., Guerrero-Bote, V.P., López-Illescas, C., & Moed, H.F. (2018). “Statistical relationships between corresponding authorship, international co-authorship and citation impact of national research systems”. Journal of informetrics, 12(4), 1251-1262. https://doi.org/10.1016/j.joi.2018.10.004
doi: 10.1016/j.joi.2018.10.004 |
[25] | Moya-Anegón, F., López-Illescas, C., Guerrero-Bote, V.P., & Moed, H.F. (2020). The citation impact of social sciences and humanities upon patentable technology. Scientometrics, to be published. |
[26] |
Narin, F., & Olivastro, D. (1992). Status report: Linkage between technology and science. Research Policy, 21, 237-249.
doi: 10.1016/0048-7333(92)90018-Y |
[27] |
Narin, F., Hamilton, K.S., & Olivastro, D. (1997). The increasing linkage between US technology and public science. Research Policy, 26, 317-330.
doi: 10.1016/S0048-7333(97)00013-9 |
[28] | Organisation for Economic Co-operation and Development. (2009). OECD Patent Statistics Manual, OECD, Paris. https://www.oecd.org/sti/inno/oecdpatentstatisticsmanual.htm |
[29] | Pickering, B. (2004). “Elsevier prepares Scopus to rival ISI Web of science”. Information world review, n. 8. |
[30] | Poege, F., Harhoff, D., Gaessler, F., & Baruffaldi, S. (2019). Science quality and the value of inventions. Science advances, 5(12), easy7323. |
[31] |
Price, D.J.D (1965). Networks of scientific papers. Science, 149, 510-515.
doi: 10.1126/science.149.3683.510 |
[32] |
Raffo, J.D., & Lhuillery, S. (2009). “How to play the ‘Names game’: Patent retrieval comparing different heuristics”. Research policy, 38(10), 1617-1627. https://doi.org/10.2139/ssrn.1441172
doi: 10.1016/j.respol.2009.08.001 |
[33] | Schmoch, U., & Khan, M. (2019). Methodological challenges for creating patent indicators. In: Glanzel, W., Moed, H.F., Schmoch, U., & Thelwall, M. (eds.), Springer Handbook of Science and Technology Indicators. Cham (Switzerland): Springer Natur, 907-927. |
[34] |
Schoen, A., Heinisch, D., & Buenstorf, G. (2014). “Playing the ‘Name game’ to identify academic patents in Germany”. Scientometrics, 101(1), 527-545. https://doi.org/10.1007/s11192-014-1400-x
doi: 10.1007/s11192-014-1400-x |
[35] | SCImago Research, Group. (2010). SIR Methodology: General Considerations. https://www.scimagoir.com/methodology.php (accessed: 01/06/2020). |
[36] | Thoma, G., & Torrisi, S. (2007). Creating powerful indicators for innovation studies with approximate matching algorithms. A test based on Patstat and Amadeus databases (No. 211). KITeS, Centre for Knowledge, Internationalization and Technology Studies, Università Bocconi, Milano, Italy. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.573.8107&rep=rep1&type=pdf (accessed: 01/06/2020). |
[37] |
Van Raan, A.F.J. (2017). Patent Citations Analysis and Its Value in Research Evaluation: A Review and a New Approach to Map Technology-relevant Research. Journal of Data and Information Science, 2, 13-50.
doi: 10.1515/jdis-2017-0002 |
[38] |
Veugelers, R., & Wang, J. (2019). Scientific novelty and technological impact. Research Policy, 48(6), 1362-1372.
doi: 10.1016/j.respol.2019.01.019 |
[39] |
Waltman, L., van Eck, N.J., van Leeuwen, T.N., Visser, M.S., & van Raan, A.F. (2011). “Towards a new crown indicator: Some theoretical considerations”. Journal of informetrics, 5(1), 37-47. https://doi.org/10.1016/j.joi.2010.08.001
doi: 10.1016/j.joi.2010.08.001 |
[1] | Mike Thelwall, Saheeda Thelwall. How Has Covid-19 Affected Published Academic Research? A Content Analysis of Journal Articles Mentioning the Virus [J]. Journal of Data and Information Science, 2021, 6(4): 1-12. |
[2] | Hyejin Park, Han Sung Kim, Han Woo Park. A Scientometric Study of Digital Literacy, ICT Literacy, Information Literacy, and Media Literacy [J]. Journal of Data and Information Science, 2021, 6(2): 116-138. |
[3] | Ting Chen, Guopeng Li, Qiping Deng, Xiaomei Wang. Using Network Embedding to Obtain a Richer and More Stable Network Layout for a Large Scale Bibliometric Network [J]. Journal of Data and Information Science, 2021, 6(1): 154-177. |
[4] | Jones Luís Schaefer, Julio Cezar Mairesse Siluk, Ismael Cristofer Baierle, Elpidio Oscar Benitez Nara. A Scientometric Approach to Analyze Scientific Development on Renewable Energy Sources [J]. Journal of Data and Information Science, 2021, 6(1): 87-119. |
[5] | Mudassar Arsalan, Omar Mubin, Abdullah Al Mahmud. Evidence-based Nomenclature and Taxonomy of Research Impact Indicators [J]. Journal of Data and Information Science, 2020, 5(3): 33-56. |
[6] | Jinshan Wu. Infrastructure of Scientometrics:The Big and Network Picture [J]. Journal of Data and Information Science, 2019, 4(4): 1-12. |
[7] | Dag, W. Aksnes, Gunnar Sivertsen . A Criteria-based Assessment of the Coverage of Scopus and Web of Science [J]. Journal of Data and Information Science, 2019, 4(1): 1-21. |
[8] | Csomós György† . Factors Influencing Cities’ Publishing Efficiency [J]. Journal of Data and Information Science, 2018, 3(3): 43-80. |
[9] | Garner Jon,L. Porter Alan,Leidolf Andreas,Baker Michelle. Measuring and Visualizing Research Collaboration and Productivity [J]. Journal of Data and Information Science, 2018, 3(1): 54-81. |
[10] | Stephen Carley, Alan L. Porter, Ismael Rafols, Loet Leydesdorff. Visualization of Disciplinary Profiles: Enhanced Science Overlay Maps [J]. Journal of Data and Information Science, 2017, 2(3): 68-111. |
[11] | Xiaojun Hu & Ronald Rousseau. Gauging a Firm's Innovative Performance Using an Integrated Structural Index for Patents [J]. Journal of Data and Information Science, 2016, 1(1): 6-27. |
[12] | Xuezhao WANG,Yajuan ZHAO,Jing ZHANG,Ping ZHAO. Patent portfolio analysis model based on legal status information [J]. Journal of Data and Information Science, 2014, 7(1): 69-83. |
[13] | David T PALMER. Knowledge exchange: A strategy for open access success at the University of Hong Kong [J]. Journal of Data and Information Science, 2011, 4(1): 81-94. |
[14] | CHEN Lixin, LIU Zeyuan & LIANG Liming. A study of the disciplinary structure of mechanics based on the titles of published journal articles in mechanics [J]. Journal of Data and Information Science, 2010, 3(4): 83-98. |
[15] | WANG Na, PAN Yuntao, MA Zheng & WU Yishan. Scopus vs WOS as scientific evaluation tools: A comparative analysis based on a testing sample search on the topic of electric vehicles [J]. Journal of Data and Information Science, 2010, 3(1): 20-34. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||