Journal of Data and Information Science ›› 2022, Vol. 7 ›› Issue (4): 39-60.doi: 10.2478/jdis-2022-0019
• Research Papers • Previous Articles Next Articles
Yuqi Wang, Yue Chen†(), Zhiqi Wang, Kang Wang, Kai Song
Received:
2022-05-24
Revised:
2022-09-16
Accepted:
2022-09-19
Published:
2022-11-11
Contact:
Yue Chen
E-mail:chenyuedlut@163.com
Add to citation manager EndNote|Ris|BibTeX
URL: http://manu47.magtech.com.cn/Jwk3_jdis/EN/10.2478/jdis-2022-0019
http://manu47.magtech.com.cn/Jwk3_jdis/EN/Y2022/V7/I4/39
This work is licensed under the Creative Commons Attribution 4.0 International License.
Figure 2.
Research collaboration strength network in the field of quantum technology. Note: The nodes represent countries that have published papers in quantum technology. The edges represent the scientific collaboration between countries. The weights of the edges represent the strength of collaboration between countries calculated by the Salton formula (Salton, 1983). The node size represents the size of the betweenness centrality of a country, and the larger the node, the more collaboration resources the country controls. The thickness of the lines represents the collaboration strength, and the thicker the lines, the stronger the collaboration strength between the two countries. We selected 53 countries based on their collaboration strength (> 0.06).
Table 3.
Top 5 collaboration countries with the highest collaboration strength in quantum technology.
No. | Collaboration country (Number of papers) | Collaboration strengtha | Collaboration papers |
---|---|---|---|
1 | Sri Lanka (64); Cyprus (109) | 0.51 | 43 |
2 | Sri Lanka (64); Georgia (139) | 0.46 | 43 |
3 | Estonia (189); Sri Lanka (64) | 0.39 | 43 |
4 | Cyprus (109); Georgia (139) | 0.38 | 47 |
5 | Egypt (1,386); Saudi Arabia (1,567) | 0.36 | 528 |
Table 4.
Statistics of the network centrality for the top 10 countries with the highest betweenness centrality in quantum technology.
No. | Country | Betweenness Centrality | Degree Centrality | Closeness Centrality |
---|---|---|---|---|
1 | France | 0.0700 | 106 | 0.7650 |
2 | South Africa | 0.0607 | 90 | 0.7083 |
3 | USA | 0.0594 | 111 | 0.7846 |
4 | Germany | 0.0518 | 106 | 0.7650 |
5 | Spain | 0.0516 | 94 | 0.7183 |
6 | China | 0.0427 | 99 | 0.7391 |
7 | England | 0.0421 | 105 | 0.7612 |
8 | India | 0.0384 | 94 | 0.7217 |
9 | Canada | 0.0367 | 92 | 0.7116 |
10 | Sweden | 0.0335 | 89 | 0.7018 |
Table 5.
Ranking of academic contribution (CT) in global quantum technology.
No. | Country | CT | Contribution proportion | No. | Country | CT | Contribution proportion |
---|---|---|---|---|---|---|---|
1 | USA | 1,593,667.96 | 30.57% | 75 | Cameroon | 364.35 | 0.007% |
2 | China | 639,792.41 | 12.28% | 76 | Iceland | 358.65 | 0.007% |
3 | Germany | 471,644.89 | 9.05% | 77 | Moldova | 332.54 | 0.006% |
4 | England | 317,155.23 | 6.08% | 78 | Indonesia | 326.91 | 0.006% |
5 | Japan | 230,317.08 | 4.42% | 79 | Ethiopia | 294.08 | 0.006% |
6 | Italy | 199,203.76 | 3.82% | 80 | Philippines | 291.82 | 0.006% |
7 | France | 198,179.40 | 3.80% | 81 | Czechoslovakia | 281.92 | 0.005% |
8 | Canada | 163,038.66 | 3.13% | 82 | Kazakhstan | 238.84 | 0.005% |
9 | Austria | 154,559.69 | 2.96% | 83 | Jordan | 213.80 | 0.004% |
10 | Switzerland | 135,561.92 | 2.60% | 84 | Kuwait | 206.25 | 0.004% |
11 | Spain | 113,040.28 | 2.17% | 85 | Sri Lanka | 200.63 | 0.004% |
12 | Australia | 111,733.35 | 2.14% | 86 | Oman | 196.78 | 0.004% |
13 | India | 91,204.80 | 1.75% | 87 | Lebanon | 162.98 | 0.003% |
14 | Netherlands | 80,271.91 | 1.54% | 88 | Malta | 155.93 | 0.003% |
15 | South Korea | 62,339.05 | 1.20% | 89 | Brunei | 98.70 | 0.002% |
16 | Russia | 61,630.01 | 1.18% | 90 | Azerbaijan | 92.67 | 0.002% |
17 | Israel | 60,244.46 | 1.16% | 91 | Palestine | 83.25 | 0.002% |
18 | Poland | 51,529.10 | 0.99% | 92 | Macedonia | 81.75 | 0.002% |
19 | Sweden | 46,708.93 | 0.90% | 93 | Vatican | 74.46 | 0.001% |
20 | Brazil | 41,762.49 | 0.80% | 94 | Bosnia & Herceg | 72.07 | 0.001% |
... | ... | ... | ... | ... | ... | ... | ... |
74 | Bahrain | 368.82 | 0.007% | 147 | Eritrea | 0.23 | 0.000004% |
Table 6.
Partial results of the research autonomy in national research collaboration (ranking by China's collaboration strength)
China | USA | Singapore | Japan | Australia | ... | Algeria | |
---|---|---|---|---|---|---|---|
China | ↙10.36% ↑-9.66% | ↙10.66% ↑-9.05% | ↙11.76% ↑-5.10% | ↙9.53% ↑-10.84% | ↙6.67% ↑0 | ||
USA | ↙20.02% ↑9.66% | ↙12.97% ↑0.09% | ↙12.92% ↑-1.58% | ↙14.18% ↑0.91% | ↙12.38% ↑1.90% | ||
Singapore | ↙19.71% ↑9.05% | ↙12.88% ↑-0.09% | ↙15.87% ↑5.333% | ↙15.22% ↑4.03% | ↙0.00% ↑0 | ||
Japan | ↙16.86% ↑5.10% | ↙14.51% ↑1.58% | ↙10.54% ↑-5.33% | ↙15.79% ↑5.53% | ↙33.33% ↑33.33% | ||
Australia | ↙20.37% ↑10.84% | ↙13.28% ↑-0.91% | ↙11.19% ↑-4.03% | ↙10.26% ↑-5.53% | ↙0.00% ↑-33.33% | ||
... | ... | ... | |||||
Algeria | ↙6.67% ↑0 | ↙10.48% ↑-1.90% | ↙0.00% ↑0 | ↙0.00% ↑-33.33% | ↙33.33% ↑33.33% | ... |
Figure 3.
Changes in the contribution of China and the US in developed and developing countries. Note: The first column on the left represents the developed countries' contribution proportion from 2001 to 2020. The second column on the left represents the USA's contribution proportion from 2001 to 2020. The first column on the right represents the developing countries' contribution proportion from 2001 to 2020. The second column on the right represents China's contribution proportion from 2001 to 2020.
Appendix 1.
The fundamental statistic of publications of zero citations.
Country | Number of Papers | Zero citation Papers | Proportion |
---|---|---|---|
USA | 40,906 | 2,224 | 5.44% |
Peoples R China | 40,180 | 4,876 | 12.14% |
Germany | 18,633 | 748 | 4.01% |
England | 11,904 | 441 | 3.70% |
Japan | 11,726 | 958 | 8.17% |
Italy | 8,937 | 492 | 5.51% |
India | 7,394 | 906 | 12.25% |
Russia | 6,252 | 721 | 11.53% |
Brazil | 3,520 | 316 | 8.98% |
Iran | 3,061 | 427 | 13.95% |
Table 8.
Distribution of the proportion of papers in the five dominance patterns of DominantChina→countries.
China | Strongly dominant | Substrongly dominant | Dominant | Subweakly dominant | Weakly dominant |
---|---|---|---|---|---|
Developed Countries | 64.13% | 1.64% | 1.01% | 1.26% | 31.96% |
USA | 79.99% | 2.39% | 0.65% | 1.30% | 15.66% |
Germany | 66.77% | 0.81% | 1.21% | 0.70% | 30.51% |
England | 63.17% | 1.02% | 1.89% | 0.87% | 33.04% |
Japan | 67.23% | 1.38% | 0.61% | 2.60% | 28.18% |
France | 41.99% | 1.10% | 1.38% | 1.10% | 54.42% |
Italy | 49.40% | 5.22% | 0.80% | 2.01% | 42.57% |
Canada | 69.73% | 1.44% | 1.26% | 1.08% | 26.49% |
Developing Countries | 29.75% | 0.51% | 1.06% | 1.24% | 67.44% |
India | 42.52% | 2.80% | 1.40% | 2.34% | 50.93% |
Russia | 31.58% | 0.38% | 1.88% | 0.75% | 65.41% |
Table 9.
Ranking of scientific research strength index (SS) in global quantum technology.
No. | Country | SR | SS | No. | Country | SR | SS |
---|---|---|---|---|---|---|---|
1 | USA | 0.54 | 853,088.21 | 75 | Philippines | 0.22 | 63.31 |
2 | China | 0.77 | 493,650.57 | 76 | Moldova | 0.19 | 61.86 |
3 | Germany | 0.36 | 170,519.88 | 77 | Indonesia | 0.16 | 51.88 |
4 | Japan | 0.59 | 136,364.59 | 78 | Macedonia | 0.62 | 50.78 |
5 | England | 0.33 | 105,841.36 | 79 | Kazakhstan | 0.21 | 49.26 |
6 | Italy | 0.42 | 84,291.22 | 80 | Jordan | 0.21 | 45.08 |
7 | India | 0.70 | 63,615.28 | 81 | Cuba | 0.07 | 41.72 |
8 | France | 0.32 | 63,100.22 | 82 | Qatar | 0.03 | 35.43 |
9 | Canada | 0.34 | 54,791.26 | 83 | Jamaica | 0.61 | 34.89 |
10 | Austria | 0.28 | 43,443.24 | 84 | Serbia Monteneg | 0.53 | 30.53 |
11 | Switzerland | 0.28 | 37,720.08 | 85 | Bahrain | 0.08 | 29.09 |
12 | Australia | 0.33 | 36,955.01 | 86 | Oman | 0.14 | 27.10 |
13 | Spain | 0.31 | 34,742.01 | 87 | Sri Lanka | 0.12 | 24.12 |
14 | South Korea | 0.55 | 34,124.41 | 88 | Brunei | 0.24 | 23.50 |
15 | Russia | 0.46 | 28,491.90 | 89 | North Korea | 0.33 | 23.45 |
16 | Iran | 0.77 | 23,826.65 | 90 | Malta | 0.14 | 21.40 |
17 | Israel | 0.37 | 22,480.51 | 91 | North Macedonia | 0.29 | 19.60 |
18 | Netherlands | 0.27 | 21,887.75 | 92 | Lebanon | 0.10 | 15.97 |
19 | Brazil | 0.52 | 21,704.77 | 93 | Bosnia & Herceg | 0.15 | 11.01 |
20 | Poland | 0.41 | 20,901.86 | 94 | Azerbaijan | 0.10 | 9.32 |
… | … | … | … | … | … | … | … |
74 | Cyprus | 0.08 | 29.09 | 147 | Panama | -0.08 | -5.01 |
[1] | Abbas, A.M. (2010). Generalized Linear Weights for Sharing Credits Among Multiple Authors. arXiv:1012.5477 [cs]. http://arxiv.org/abs/1012.5477 |
[2] |
Abbas, A.M. (2011). Weighted indices for evaluating the quality of research with multiple authorship. Scientometrics, 88(1), 107-131. https://doi.org/10.1007/s11192-011-0389-7
doi: 10.1007/s11192-011-0389-7 |
[3] | BINOSI, D., & CALARCO, T. (2017). Quantum Information Classification Scheme-QICS. http://qurope.eu/content/qics-book |
[4] | Bornmann, Lutz, Leydesdorff, Loet, Wagner, Caroline, & S. (2015). Recent Developments in China-US Cooperation in Science. Minerva: A Review of Science, Learning and Policy, 53(3), 199-214. |
[5] |
Brandes, U. (2001). A faster algorithm for betweenness centrality. The Journal of Mathematical Sociology, 25(2), 163-177. https://doi.org/10.1080/0022250X.2001.9990249
doi: 10.1080/0022250X.2001.9990249 |
[6] |
Charles & Oppenheim. (1998). Fractional counting of multiauthored publications. Journal of the American Society for Information Science, 49(5), 482-482. https://doi.org/10.1002/(sici)1097-4571(19980415)49:5<482::aid-asi11>3.3.co;2-8
doi: 10.1002/(SICI)1097-4571(19980415)49:5<482::AID-ASI10>3.0.CO;2-K |
[7] |
Chen, K.H., Zhang, Y., & Fu, X.L. (2019). International research collaboration: An emerging domain of innovation studies? Research Policy, 48(1), 149-168. https://doi.org/10.1016/j.respol.2018.08.005
doi: 10.1016/j.respol.2018.08.005 |
[8] |
Cho, C.-C., Hu, M.-W., & Liu, M.-C. (2010). Improvements in productivity based on co-authorship: A case study of published articles in China. Scientometrics, 85(2), 463-470. https://doi.org/10.1007/s11192-010-0263-z
doi: 10.1007/s11192-010-0263-z |
[9] |
Cole, J.R., & Cole, S. (1974). Social Stratification in Science. American Journal of Physics, 42(10), 923-924. https://doi.org/10.1119/1.1987897
doi: 10.1119/1.1987897 |
[10] |
Díaz-Faes, A.A., Costas, R., Galindo, M.P., & Bordons, M. (2015). Unravelling the performance of individual scholars: Use of Canonical Biplot analysis to explore the performance of scientists by academic rank and scientific field. Journal of Informetrics, 9(4), 722-733. https://doi.org/10.1016/j.joi.2015.04.006
doi: 10.1016/j.joi.2015.04.006 |
[11] | Edler, J. (2010). International Policy Coordination for Collaboration in S&T (SSRN Scholarly Paper ID 1542583). Social Science Research Network. https://doi.org/10.2139/ssrn.1542583 |
[12] |
Egghe, L. (1991). Theory of collaboration and collaborative measures. Information Processing & Management, 27(2), 177-202. https://doi.org/10/b84gmq
doi: 10.1016/0306-4573(91)90048-Q |
[13] |
Egghe, L., Rousseau, R., & Van Hooydonk, G. (2000). Methods for accrediting publications to authors or countries: Consequences for evaluation studies. Journal of the American Society for Information Science, 51(2), 145-157. https://doi.org/10.1002/(SICI)1097-4571(2000)51:2<145::AID-ASI6>3.0.CO;2-9
doi: 10.1002/(SICI)1097-4571(2000)51:2<145::AID-ASI6>3.0.CO;2-9 |
[14] | Fedorov, A.K., Akimov, A.V., Biamonte, J.D., Kavokin, A.V., Khalili, F.Y., Kiktenko, E.O., Kolachevsky, N.N., Kurochkin, Y.V., Lvovsky, A.I., Rubtsov, A.N., Shlyapnikov, G.V., Straupe, S.S., Ustinov, A.V., & Zheltikov, A.M. (2019). Quantum technologies in Russia. Quantum Science and Technology, 4(4), 040501. https://doi.org/10.1088/2058-9565/ab4472 |
[15] | González-Alcaide, G., Park, J., Huamaní, C., & Ramos, J.M. (2017). Dominance and leadership in research activities: Collaboration between countries of differing human development is reflected through authorship order and designation as corresponding authors in scientific publications. PLOS ONE, 12(8), e0182513. https://doi.org/10/gbqt6b |
[16] |
Haeffner-Cavaillon, N., & Graillot-Gak, C. (2009). The use of bibliometric indicators to help peer-review assessment. Archivum Immunologiae et Therapiae Experimentalis, 57(1), 33. https://doi.org/10.1007/s00005-009-0004-2
doi: 10.1007/s00005-009-0004-2 pmid: 19219530 |
[17] |
Hagen, N.T. (2010). Harmonic publication and citation counting: Sharing authorship credit equitably—not equally, geometrically or arithmetically. Scientometrics, 84(3), 785-793. https://doi.org/10.1007/s11192-009-0129-4
pmid: 20700372 |
[18] | Harnad, S. (2008). Validating Research Performance Metrics Against Peer Rankings. Ethics in Science & Environmental Politics, 8(1), 111-120. https://doi.org/10.3354/esep00088 |
[19] |
He, T.W. (2009). International scientific collaboration of China with the G7 countries. Scientometrics, 80(3), 571-582. https://doi.org/10.1007/s11192-007-2043-y
doi: 10.1007/s11192-007-2043-y |
[20] | Hodge, S.E., Greenberg, D.A., & Challice, C.E. (1981). Publication Credit. Science, 213(4511), 950-952. |
[21] |
Inglesi-Lotz, R., & Pouris, A. (2011). Scientometric impact assessment of a research policy instrument: The case of rating researchers on scientific outputs in South Africa. Scientometrics, 88(3), 747. https://doi.org/10.1007/s11192-011-0440-8.
doi: 10.1007/s11192-011-0440-8 |
[22] | International Monetary Fund. (2018). World Economic Outlook, April 2018: Cyclical Upswing Structural Change. IMF. https://www.imf.org/en/Publications/WEO/Issues/2018/03/20/world-economic-outlook-april-2018 |
[23] | Jia, Z.J., Hong, B., Chen, D.M., Huang, Q.H., Yang, Z.G., Yin, C., Deng, X.Q., & Liu, J.M. (2014). China's Growing Contribution to Global Intracranial Aneurysm Research (1991-2012): A Bibliometric Study. PLOS ONE, 9(3), e91594. https://doi.org/10.1371/journal.pone.0091594 |
[24] |
Kato, M., & Ando, A. (2017). National ties of international scientific collaboration and researcher mobility found in Nature and Science. Scientometrics, 110(2), 673-694. https://doi.org/10/f9vc64
doi: 10.1007/s11192-016-2183-z |
[25] |
Kim, J., & Diesner, J. (2014). A network-based approach to coauthorship credit allocation. Scientometrics, 101(1), 587-602. https://doi.org/10.1007/s11192-014-1253-3
doi: 10.1007/s11192-014-1253-3 |
[26] |
Lindsey, D. (1980). Production and Citation Measures in the Sociology of Science: The Problem of Multiple Authorship. Social Studies of Science, 10(2), 145-162. https://doi.org/10.1177/030631278001000202
doi: 10.1177/030631278001000202 |
[27] | Liu, J., & Mei, Y.E. (2015). Research on the Subject Development Forecast Based on ESl and lnCites—Taking China University of Geosciences as an Example. Sci-Tech Information Development & Economy. http://en.cnki.com.cn/Article_en/CJFDTotal-KJQB201506056.htm |
[28] |
Liu, X.Z., & Fang, H. (2012a). Fairly sharing the credit of multi-authored papers and its application in the modification of h-index and g-index. Scientometrics, 91(1), 37-49. https://doi.org/10.1007/s11192-011-0571-y
doi: 10.1007/s11192-011-0571-y |
[29] |
Liu, X.Z., & Fang, H. (2012b). Modifying h-index by allocating credit of multi-authored papers whose author names rank based on contribution. Journal of Informetrics, 6(4), 557-565. https://doi.org/10.1016/j.joi.2012.05.002
doi: 10.1016/j.joi.2012.05.002 |
[30] | Lukovits, I., & Vinkler, P. (1995). Correct credit distribution: A model for sharing credit... Social Indicators Research. http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=9601233217&site=ehost-live |
[31] |
Ma, T.C., Li, R.N., Ou, G.Y., & Yue, M.L. (2018). Topic based research competitiveness evaluation. Scientometrics, 117(2), 789-803. https://doi.org/10.1007/s11192-018-2891-7
doi: 10.1007/s11192-018-2891-7 |
[32] |
Mallapaty, S. (2021). China's five-year plan focuses on scientific self-reliance. Nature, 591(7850), 353-354. https://doi.org/10.1038/d41586-021-00638-3
doi: 10.1038/d41586-021-00638-3 |
[33] |
Mokhnacheva, Yu, V., & Kharybina, T.N. (2011). Research performance of RAS institutions and Russian universities: A comparative bibliometric analysis. Herald of the Russian Academy of Sciences, 81(6), 569-574. https://doi.org/10.1134/S1019331611060104
doi: 10.1134/S1019331611060104 |
[34] |
Morris, S.A., Yen, G., Wu, Z., & Asnake, B. (2003). Time line visualization of research fronts. Journal of the American Society for Information Science and Technology, 54(5), 413-422.
doi: 10.1002/asi.10227 |
[35] | Padma, T.V. (2020). India bets big on quantum technology [News]. Nature. https://www.nature.com/articles/d41586-020-00288-x |
[36] | Salehi, A.A. (2021). Iran has started developing quantum technology, Salehi says. Tehran Times. https://www.tehrantimes.com/news/457400/Iran-has-started-developing-quantum-technology-Salehi-says |
[37] | Salton, G., & Mcgill, M.J. Introduction to Modern Information Retrieval[M]. New York: McGraw-Hill Book Copany, 1983. |
[38] |
Shibata, N., Kajikawa, Y., Takeda, Y., & Matsushima, K. (2008). Detecting emerging research fronts based on topological measures in citation networks of scientific publications. Technovation, 28(11), 758-775. https://doi.org/10.1016/j.technovation.2008.03.009
doi: 10.1016/j.technovation.2008.03.009 |
[39] |
Small, H., Boyack, K.W., & Klavans, R. (2014). Identifying emerging topics in science and technology. Research Policy, 43(8), 1450-1467. https://doi.org/10.1016/j.respol.2014.02.005
doi: 10.1016/j.respol.2014.02.005 |
[40] |
Small, H., & Upham, P. (2009). Citation structure of an emerging research area on the verge of application. Scientometrics, 79(2), 365-375. https://doi.org/10.1007/s11192-009-0424-0
doi: 10.1007/s11192-009-0424-0 |
[41] | Smith-Goodson, P. (2019). Quantum USA Vs. Quantum China: The World's Most Important Technology Race. https://www.forbes.com/sites/moorinsights/2019/10/10/quantum-usa-vs-quantum-china-the-worlds-most-important-technology-race/?sh=6f76589e72de |
[42] |
Tollefson, J. (2018). China declared world's largest producer of scientific articles. Nature, 553(7689), 390-390. https://doi.org/10.1038/d41586-018-00927-4
doi: 10.1038/d41586-018-00927-4 |
[43] |
Van Hooydonk, G. (1997). Fractional counting of multiauthored publications: Consequences for the impact of authors. Journal of the American Society for Information Science, 48(10), 944-945. https://doi.org/10.1002/(SICI)1097-4571(199710)48:10<944::AID-ASI8>3.0.CO;2-1
doi: 10.1002/(SICI)1097-4571(199710)48:10<944::AID-ASI8>3.0.CO;2-1 |
[44] | Wang, L.L., & Wang, X.W. (2017). Who sets up the bridge? Tracking scientific collaborations between China and the European Union. Research Evaluation, 2. https://doi.org/10.1093/reseval/rvx009 |
[45] |
Wang, X.W., Xu, S.M., Wang, Z., Peng, L., & Wang, C.L. (2013). International scientific collaboration of China: Collaborating countries, institutions and individuals. Scientometrics, 95(3), 885-894. https://doi.org/10.1007/s11192-012-0877-4
doi: 10.1007/s11192-012-0877-4 |
[46] | Wang, W.P. (2014). Study on the Patterns and Impacts of China's International Scientific and Technological Collaboration Based on Scientometrics. Doctoral dissertation, Beijing Institute of Technology. |
[47] | Zhang, Z.Q., Chen, Y.W., Tao, C., Xu, J., & TIAN, Q.F. (2018). Bibliometric Analysis on International Competitive Situation of Quantum Information Research. WORLD SCI-TECH R&D, 40(1), 37-49. |
[48] |
Zheng, J., Zhao, Z.Y., Zhang, X., Chen, D.Z., & Huang, M.H. (2014). International collaboration development in nanotechnology: A perspective of patent network analysis. Scientometrics, 98(1), 683-702. https://doi.org/10/f5ns65
doi: 10.1007/s11192-013-1081-x |
[49] |
Zhou, P., & Glänzel, W. (2010). In-depth analysis on China's international cooperation in science. Scientometrics, 82(3), 597-612. https://doi.org/10.1007/s11192-010-0174-z
doi: 10.1007/s11192-010-0174-z |
[50] |
Zou, Y.W., & Laubichler, M.D. (2017). Measuring the contributions of Chinese scholars to the research field of systems biology from 2005 to 2013. Scientometrics, 110(3), 1615-1631. https://doi.org/10/f9vfz2
doi: 10.1007/s11192-016-2213-x |
[1] | Xiaoqiu Le, Jingdan Chu, Siyi Deng, Qihang Jiao, Jingjing Pei, Liya Zhu, Junliang Yao. CiteOpinion: Evidence-based Evaluation Tool for Academic Contributions of Research Papers Based on Citing Sentences [J]. Journal of Data and Information Science, 2019, 4(4): 26-41. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||