Journal of Data and Information Science ›› 2023, Vol. 8 ›› Issue (1): 47-71.doi: 10.2478/jdis-2023-0002
• Research Paper • Previous Articles Next Articles
Shelia X. Wei1,2,†(), Helena H. Zhang3, Howell Y. Wang1,2, Fred Y. Ye1,2,†(
)
Received:
2022-08-28
Revised:
2022-11-15
Accepted:
2022-12-22
Online:
2023-02-20
Published:
2023-02-22
Contact:
†Shelia X. Wei (Email:
Add to citation manager EndNote|Ris|BibTeX
URL: http://manu47.magtech.com.cn/Jwk3_jdis/EN/10.2478/jdis-2023-0002
http://manu47.magtech.com.cn/Jwk3_jdis/EN/Y2023/V8/I1/47
This work is licensed under the Creative Commons Attribution 4.0 International License.
Table 1.
Basic statistics in three datasets
Types | EB technologies | MIT technologies | MAN technologies | |||||
---|---|---|---|---|---|---|---|---|
Number | Ratio (%) | Number | Ratio (%) | Number | Ratio (%) | |||
Y: high | 8 | 23.53 | 2 | 5.88 | 1 | 2.94 | ||
Y: low | 14 | 41.18 | 15 | 44.12 | 4 | 11.76 | ||
Y: total | 22 | 64.71 | 17 | 50.00 | 5 | 14.71 | ||
N: high | 4 | 11.76 | 5 | 14.71 | 16 | 47.06 | ||
N: low | 8 | 23.52 | 12 | 35.29 | 13 | 38.24 | ||
N: total | 12 | 35.29 | 17 | 50.00 | 29 | 85.29 | ||
Total | 34 | 100 | 34 | 100 | 34 | 100 |
Table 2.
The basic statistics of SP and ST in two groups
Types | Min. | Q1 | Med. | Q3 | Max. | Avg. | Std. | Mann-Whitney U | ||
---|---|---|---|---|---|---|---|---|---|---|
Asymp. Sig. | Exact Sig. | |||||||||
SP | Y: high | 24 | 284 | 404 | 1631 | 11,272 | 2,417.364 | 4,263.708 | 0.236 | 0.247 |
N: high | 5 | 191.500 | 3,401 | 8,794.500 | 25,318 | 5,655.760 | 6,864.649 | |||
Y: low | 32 | 258 | 1,605 | 14,646.500 | 170,403 | 13,542.091 | 30,785.932 | 0.423 | 0.427 | |
N: low | 3 | 148 | 1,870 | 7,860.500 | 271,445 | 16,956.970 | 52,020.530 | |||
ST | Y: high | 5 | 27 | 51 | 131 | 1,913 | 318.000 | 626.277 | 0.354 | 0.364 |
N: high | 0 | 25 | 231 | 576.500 | 2,421 | 458.440 | 636.046 | |||
Y: low | 2 | 16 | 96 | 747.500 | 5,817 | 691 | 1,235.256 | 0.040 | 0.040 | |
N: low | 0 | 2.500 | 54 | 174 | 9,937 | 651.636 | 2,063.485 |
[1] |
Abercrombie R. K., Udoeyop A. W., & Schlicher B. G. (2013). A study of scientometric methods to identify emerging technologies via modeling of milestones. Scientometrics, 91(2), 327-342.
doi: 10.1007/s11192-011-0614-4 |
[2] |
Adams J. (1990). Fundamental stocks of knowledge and productivity growth. Journal of Political Economy, 98(4), 673-702.
doi: 10.1086/261702 |
[3] |
Adamuthe A. C., & Thampi G. T. (2019). Technology forecasting: a case study of computational technologies. Technological Forecasting and Social Change, 143, 181-189.
doi: 10.1016/j.techfore.2019.03.002 |
[4] |
Ahuja G., & Lampert C.M. (2001). Entrepreneurship in the large corporation: A longitudinal study of how established firms create breakthrough inventions. Strategic Management Journal, 22(6-7), 521-543.
doi: 10.1002/smj.176 |
[5] |
Andersen B. (1999). The hunt for S-shaped growth paths in technological innovation: A patent study. Journal of Evolutionary Economics, 9(4), 487-526.
doi: 10.1007/s001910050093 |
[6] |
Ardito L., D'Adda D., & Petruzzelli A. M. (2018). Mapping innovation dynamics in the Internet of Things domain: Evidence from patent analysis. Technological Forecasting and Social Change, 136, 317-330.
doi: 10.1016/j.techfore.2017.04.022 |
[7] |
Arts S., & Veugelers R. (2015). Technology familiarity, recombinant novelty, and breakthrough invention. Industrial and Corporate Change, 24(6), 1215-1246.
doi: 10.1093/icc/dtu029 |
[8] | Asid R., & Khalifah N. A. (2016). The effects of foreign R&D and triadic patent propensity on developing economies efficiency and convergence. Journal Ekonomi Malaysia, 50(2), 107-124. |
[9] |
Baudry M., & Dumont B. (2004). Comparing firms' triadic patent applications across countries: Is there a gap in terms of R&D effort or a gap in terms of performances? Research Policy, 35(2), 324-342.
doi: 10.1016/j.respol.2005.12.004 |
[10] |
Briggs K., & Buehler D. L. (2019). An analysis of technologically radical innovation and breakthrough patents. International Journal of the Economics of Business, 25(3), 341-365.
doi: 10.1080/13571516.2018.1438873 |
[11] | Bush V. (1945). Science: The endless frontier. Washington, DC: Government Printing Office. |
[12] | Chen D. Z., Huang W. T., & Huang M. H. (2014). Analyzing Taiwan's patenting performance: Comparing US patents and triadic patent families. Malaysian Journal of Library and Information Science, 19(1), 51-70. |
[13] |
Chen S., Huang F. W., & Lin J. H. (2022). Effects of Cap-and-Trade Mechanism and Financial Gray Rhino Threats on Insurer Performance. Energies, 15(15), 5506.
doi: 10.3390/en15155506 |
[14] |
Cheng Y., Huang L., Ramlogan R., & Li X. (2017). Forecasting of potential impacts of disruptive technology in promising technological areas: Elaborating the SIRS epidemic model in RFID technology. Technological Forecasting and Social Change, 117, 170-183.
doi: 10.1016/j.techfore.2016.12.003 |
[15] |
Christensen C. M. (2006). The ongoing process of building a theory of disruption. Journal of Product Innovation Management, 23(1), 39-55.
doi: 10.1111/j.1540-5885.2005.00180.x |
[16] |
Cleverdon C. W. (1972). On the inverse relationship of recall and precision. Journal of documentation, 28(3), 195-201.
doi: 10.1108/eb026538 |
[17] |
Criscuolo P. (2006). The 'home advantage' effect and patent families. A comparison of OECD triadic patents, the USPTO and the EPO. Scientometrics, 66(1), 23-41.
doi: 10.1007/s11192-006-0003-6 |
[18] |
Dahlin K. B, & Behrens D. M. (2005). When is an invention really radical? Defining and measuring technological radicalness. Research Policy, 34(5), 717-737.
doi: 10.1016/j.respol.2005.03.009 |
[19] |
Dehghanimadvar M., Shirmohammadi R., Sadeghzadeh M., Aslani A., & Ghasempour R. (2020) Hydrogen production technologies: Attractiveness and future perspective. International Journal of Energy Research, 44(11), 8233-8254.
doi: 10.1002/er.5508 |
[20] |
de Rassenfosse G., Dernis H., Guellec D., Picci L., & de la Potterie B. V. (2013). The worldwide count of priority patents: A new indicator of inventive activity. Research Policy, 42(3), 720-737.
doi: 10.1016/j.respol.2012.11.002 |
[21] | Dernis H., & Khan M. (2004). Triadic patent families methodology. OECD Science, Technology and Industry Working Papers, 02. |
[22] |
Dupuis R. D., & Krames M. R. (2008). History, development, and applications of high-brightness visible light-emitting diodes. Journal of Lightwave Technology, 26(9), 1154-1171.
doi: 10.1109/JLT.2008.923628 |
[23] | EDinformatrics. (n.d.). The Encyclopedia Britannica's list for the Greatest Inventions of all times. https://www.edinformatics.com/inventions_inventors/ |
[24] |
Ernst H. (1997). The use of patent data for technological forecasting: The diffusion of CNC-technology in the machine tool industry. Small Business Economics, 9(4), 361-381.
doi: 10.1023/A:1007921808138 |
[25] |
Fischer T., & Ringler P. (2015). The coincidence of patent thickets-A comparative analysis. Technovation, 38, 42-49.
doi: 10.1016/j.technovation.2014.11.004 |
[26] |
Fleming L. (2001). Recombinant uncertainty in technological search. Management Science, 47(1), 117-132.
doi: 10.1287/mnsc.47.1.117.10671 |
[27] |
Gao L. D., Porter A. L., Wang J., Fang S., Zhang X., Ma T. T., Wang W. P., & Huang L. (2013). Technology life cycle analysis method based on patent documents. Technological Forecasting and Social Change, 80(3), 398-407.
doi: 10.1016/j.techfore.2012.10.003 |
[28] | Geum Y., Jeon J., & Seol H. (2013). Identifying technological opportunities using the novelty detection technique: a case of laser technology in semiconductor manufacturing. Technology Analysis & Strategic Management, 25(1), 1-22. |
[29] |
Giovanis E., & Ozdamar O. (2015). Determinants of total factor productivity: Evidence from US compustat firms and triadic patent families. International Journal of Economics and Business Research, 10(3), 258-272.
doi: 10.1504/IJEBR.2015.071845 |
[30] | Graham S. J. H., Marco A. C., & Myers A. F. (2018). Patent transactions in the marketplace: Lessons from the USPTO Patent Assignment Dataset. Journal of Economics & Management Strategy, 27(3), 343-371. |
[31] | Guo J., Xiang P. C., & Lee Y. L. (2022). Analyzing and controlling construction engineering project gray rhino risks with innovative mcdm methods: interference fuzzy analytical network process and decision-making trial and evaluation laboratory. Applied Sciences-Basel, 12(11), 5693. |
[32] | Haupt R., Kloyer M., & Lange M. (2007). Patent indicators for the technology life cycle development. Research Policy, 36(3), 387-398. |
[33] |
Higham K., Contisciani M., & De Bacco C. (2022). Multilayer patent citation networks: A comprehensive analytical framework for studying explicit technological relationships. Technological Forecasting and Social Change, 179, 121628.
doi: 10.1016/j.techfore.2022.121628 |
[34] |
Huang C., & Jacob J. (2014). Determinants of quadic patenting: Market access, imitative threat, competition and strength of intellectual property rights. Technological Forecasting and Social Change, 85, 4-16.
doi: 10.1016/j.techfore.2013.04.004 |
[35] |
Huang F. W. (2020). A simple model of financial grey rhino under insurer capital regulation. Applied Economics, 52(46), 5088-5097.
doi: 10.1080/00036846.2020.1752905 |
[36] | Jia W. F., Xie Y. P., Zhao Y. N., Yao K., Shi H., & Chong D. Z. (2021). Research on disruptive technology recognition of China's electronic information and communication industry based on patent influence. Journal of Global Information Management, 29(2), 148-165. |
[37] |
Jung H. J. (2020). Recombination sources and breakthrough inventions: University-developed technology versus firm-developed technology. Journal of Technology Transfer, 45(4), 1121-1166.
doi: 10.1007/s10961-019-09741-0 |
[38] |
Kim D., Cerigo D. B., Jeong H., & Youn H. (2016). Technological novelty profile and invention's future impact. EPJ Data Science, 5, 8.
doi: 10.1140/epjds/s13688-016-0069-1 |
[39] |
Kim G., & Bae J. (2017). A novel approach to forecast promising technology through patent analysis. Technological Forecasting and Social Change, 117, 228-237.
doi: 10.1016/j.techfore.2016.11.023 |
[40] |
Laurens P., Le Bas C., & Schoen A. (2019). Worldwide IP coverage of patented inventions in large pharma firms: to what extent do the internationalisation of R&D and firm strategy matter? International Journal of Technology Management, 80(3-4), 177-211.
doi: 10.1504/IJTM.2019.100283 |
[41] |
Lee C., Kang B., & Shin J. (2015a). Novelty-focused patent mapping for technology opportunity analysis. Technological Forecasting and Social Change, 90, 355-365.
doi: 10.1016/j.techfore.2014.05.010 |
[42] |
Lee C., Kim J., Kwon O., & Woo H. G. (2016). Stochastic technology life cycle analysis using multiple patent indicators. Technological Forecasting and Social Change, 106, 53-64.
doi: 10.1016/j.techfore.2016.01.024 |
[43] | Lee W. S., Han E. J., & Sohn S. Y. (2015b). Predicting the pattern of technology convergence using big-data technology on large-scale triadic patents. Technology Analysis & Strategic Management, 100, 317-329. |
[44] |
Lezama-Nicolas R., Rodriguez-Salvador M., Rio-Belver R., & Bildosola I. (2018). A bibliometric method for assessing technological maturity: The case of additive manufacturing. Scientometrics, 117(3), 1425-1452.
doi: 10.1007/s11192-018-2941-1 pmid: 30546169 |
[45] |
Lin D. M., Liu W. B., Guo Y. X., & Meyer M. (2021a). Using technological entropy to identify technology life cycle. Journal of Informetrics, 15(2), 101137.
doi: 10.1016/j.joi.2021.101137 |
[46] |
Lin J. H., Chang C. P., & Chen S. (2021b). A simple model of financial grey rhino under insurer capital regulation: an extension. Applied Economics Letters, 28(21), 1872-1876.
doi: 10.1080/13504851.2020.1854655 |
[47] |
Lin M., & Patel P. C. (2019). Distant search, technological diversity, and branding focus: Incremental and radical innovation in small- and medium-sized consignees. IEEE Transactions on Engineering Management, 66(2), 170-179.
doi: 10.1109/TEM.2018.2836179 |
[48] |
Liu C. Y., & Wang J. C. (2010). Forecasting the development of the biped robot walking technique in Japan through S-curve model analysis. Scientometrics, 82(1), 21-36.
doi: 10.1007/s11192-009-0055-5 |
[49] |
Liu W., Tan R. H., Li Z. B., Cao G. Z., & Yu F. (2021). A patent-based method for monitoring the development of technological innovations based on knowledge diffusion. Journal of Knowledge Management, 25(2), 380-401.
doi: 10.1108/JKM-09-2019-0502 |
[50] |
Liu X. W., Wang X. Z., Lyu L., & Wang Y. P. (2022). Identifying disruptive technologies by integrating multi-source data. Scientometrics, 127(9), 5325-5351.
doi: 10.1007/s11192-022-04283-z |
[51] |
Madvar M. D., Ahmadi F., Shirmohammadi R., Aslani A. (2019a). Forecasting of wind energy technology domains based on the technology life cycle approach. Energy Reports, 5, 1236-1248.
doi: 10.1016/j.egyr.2019.08.069 |
[52] |
Madvar M. D., Aslani A., Ahmadi M. H., & Ghomi N. S. K. (2019b). Current status and future forecasting of biofuels technology development. International Journal of Energy Research, 43(3), 1142-1160.
doi: 10.1002/er.4344 |
[53] |
Magee C. L., Kleyn P. W., Monks B. M., Betz U., & Basnet S. (2018). Pre-existing technological core and roots for the CRISPR breakthrough. PLoS ONE, 13(9), e0198541.
doi: 10.1371/journal.pone.0198541 |
[54] | Mattos L. H. S., & Speziali M. G. (2017). Patent landscape: Technology development behind science in the flavor and fragrances (F&F) area. World Patent Information, 51, 57-65. |
[55] |
Messinis G. (2011). Triadic citations, country biases and patent value: The case of pharmaceuticals. Scientometrics, 89(3), 813-833.
doi: 10.1007/s11192-011-0473-z |
[56] |
Meyer P. S., Yung J. W., & Ausubel J. H. (1999). A primer on logistic growth and substitution - The mathematics of the Loglet Lab software. Technological Forecasting and Social Change, 61(3), 247-271.
doi: 10.1016/S0040-1625(99)00021-9 |
[57] |
Milanez D. H., de Faria L. I. L., do Amaral R. M., Leiva D. R., & Gregolin J. A. R. (2014). Patents in nanotechnology: An analysis using macro-indicators and forecasting curves. Scientometrics, 101(2), 1097-1112.
doi: 10.1007/s11192-014-1244-4 |
[58] | MIT Technology Review. (2003, February 1). 10 breakthrough technologies. https://www.technologyreview.com/10-breakthrough-technologies/2003/ |
[59] | MIT Technology Review. (2004, February 1). 10 breakthrough technologies. https://www.technologyreview.com/10-breakthrough-technologies/2004/ |
[60] | MIT Technology Review. (2005, May 1). 10 breakthrough technologies. https://www.technologyreview.com/10-breakthrough-technologies/2005/ |
[61] | MIT Technology Review. (2006, March 1). 10 breakthrough technologies. https://www.technologyreview.com/10-breakthrough-technologies/2006/ |
[62] | MIT Technology Review. (2007, March 1). 10 breakthrough technologies. https://www.technologyreview.com/10-breakthrough-technologies/2007/ |
[63] | MIT Technology Review. (2007, February 19). 10 breakthrough technologies. https://www.technologyreview.com/10-breakthrough-technologies/2008/ |
[64] | MIT Technology Review. (2009, February 24). 10 breakthrough technologies. https://www.technologyreview.com/10-breakthrough-technologies/2009/ |
[65] | MIT Technology Review. (2010, April 20). 10 breakthrough technologies. https://www.technologyreview.com/10-breakthrough-technologies/2010/ |
[66] | MIT Technology Review. (2011, April 19). 10 breakthrough technologies. https://www.technologyreview.com/10-breakthrough-technologies/2011/ |
[67] | MIT Technology Review. (2012, April 25). 10 breakthrough technologies. https://www.technologyreview.com/10-breakthrough-technologies/2012/ |
[68] | MIT Technology Review. (2013, April 23). 10 breakthrough technologies. https://www.technologyreview.com/10-breakthrough-technologies/2013/ |
[69] | MIT Technology Review. (2014, April 23). 10 breakthrough technologies. https://www.technologyreview.com/10-breakthrough-technologies/2014/ |
[70] | MIT Technology Review. (2015, February 18). 10 breakthrough technologies. https://www.technologyreview.com/10-breakthrough-technologies/2015/ |
[71] | MIT Technology Review. (2016, February 23). 10 breakthrough technologies. https://www.technologyreview.com/10-breakthrough-technologies/2016/ |
[72] | MIT Technology Review. (2017, February 22). 10 breakthrough technologies. https://www.technologyreview.com/10-breakthrough-technologies/2017/ |
[73] | MIT Technology Review. (2018, February 21). 10 breakthrough technologies. https://www.technologyreview.com/10-breakthrough-technologies/2018/ |
[74] | MIT Technology Review. (2019, February 27). 10 breakthrough technologies. https://www.technologyreview.com/10-breakthrough-technologies/2019/ |
[75] |
Momeni A., & Rost K. (2016). Identification and monitoring of possible disruptive technologies by patent-development paths and topic modeling. Technological Forecasting and Social Change, 104, 16-29.
doi: 10.1016/j.techfore.2015.12.003 |
[76] | Phene A., Fladmoe-Lindquist K., & Marsh L. (2006). Breakthrough innovations in the US biotechnology industry: The effects of technological space and geographic origin. Strategic Management Journal, 27(4), 369-388. |
[77] |
Parameswar N., Chaubey A., & Dhir S. (2021). Black swan: bibliometric analysis and development of research agenda. Benchmarking-An International Journal, 28(7), 2259-2279.
doi: 10.1108/BIJ-08-2020-0443 |
[78] |
Rizzo U., Barbieri N., Ramaciotti L., & Iannantuono D. (2020). The division of labour between academia and industry for the generation of radical inventions. The Journal of Technology Transfer, 45(2), 393-413.
doi: 10.1007/s10961-018-9688-y |
[79] |
Rosenberg N. (1974). Science, invention and economic growth. Economic Journal, 84(333), 90-108.
doi: 10.2307/2230485 |
[80] |
Shane S. (2001). Technological opportunities and new firm creation. Management Science, 47(2), 205-220.
doi: 10.1287/mnsc.47.2.205.9837 |
[81] |
Shen Y. C., Chang S. H., Lin G. T. R., & Yu H. C. (2010). A hybrid selection model for emerging technology. Technological Forecasting and Social Change, 77(1), 151-166.
doi: 10.1016/j.techfore.2009.05.001 |
[82] |
Sternitzke C. (2009). Defining triadic patent families as a measure of technological strength. Scientometrics, 81(1), 91-109.
doi: 10.1007/s11192-009-1836-6 |
[83] | Stoffels M. A., Klauck F. J. R., Hamadi T., Glorius F., & Leker J. (2020). Technology trends of catalysts in hydrogenation reactions: A patent landscape analysis. Advanced Synthesis & Catalysis, 362(2), 1258-1274. |
[84] |
Strumsky D., & Lobo J. (2015). Identifying the sources of technological novelty in the process of invention. Research Policy, 44(8), 1445-1461.
doi: 10.1016/j.respol.2015.05.008 |
[85] |
Sun B. X., Kolesnikov S., Goldstein A., & Chan G. (2021). A dynamic approach for identifying technological breakthroughs with an application in solar photovoltaics. Technological Forecasting and Social Change, 165, 120534.
doi: 10.1016/j.techfore.2020.120534 |
[86] |
Tahmooresnejad L., & Beaudry C. (2019). Capturing the economic value of triadic patents. Scientometrics, 118(1), 127-157.
doi: 10.1007/s11192-018-2959-4 |
[87] | Taleb N. N. (2007). Black swans:The impact of the highly improbable. New York: Random House. |
[88] |
van der Pol J., & Rameshkoumar J. P. (2018). The co-evolution of knowledge and collaboration networks: the role of the technology life-cycle. Scientometrics, 114(1), 307-323.
doi: 10.1007/s11192-017-2579-4 |
[89] |
Verhoeven D., Bakker J., & Veugelers R. (2016). Measuring technological novelty with patent-based indicators. Research Policy, 45(3), 707-723.
doi: 10.1016/j.respol.2015.11.010 |
[90] |
Wang J., & Chen Y. J. (2019). A novelty detection patent mining approach for analyzing technological opportunities. Advanced Engineering Informatics, 42, 100941.
doi: 10.1016/j.aei.2019.100941 |
[91] |
Winnink J. J., & Tijssen R. J. W. (2015). Early stage identification of breakthroughs at the interface of science and technology: Lessons drawn from a landmark publication. Scientometrics, 102(1), 113-134.
doi: 10.1007/s11192-014-1451-z |
[92] |
Wu L. F., Wang D. S., & Evans J. A. (2019). Large teams develop and small teams disrupt science and technology. Nature, 566(7744), 378-382.
doi: 10.1038/s41586-019-0941-9 |
[93] | Wucker M. (2016). The grey-rhino:How to recognize and act on the obvious dangers we ignore. London: St. Martin's Press. |
[94] |
Yeh H. Y., Huang M. H., & Chen D. Z. (2015). The longitudinal study of highly-impact-technology enterprises in the ICT industry: A social network perspective. Journal of Global Information Management, 22(4), 54-74.
doi: 10.4018/jgim.2014100104 |
[95] |
Yoon B., & Park Y. (2007). Development of new technology forecasting algorithm: Hybrid approach for morphology analysis and conjoint analysis of patent information. IEEE Transactions on Engineering Management, 54(3), 588-599.
doi: 10.1109/TEM.2007.900796 |
[96] | Yoon J., Park Y., Kim M., Lee J., & Lee D. (2014). Tracing evolving trends in printed electronics using patent information. Journal of Nanoparticle Research, 16(7), 1-15. |
[97] |
Yung J. W., Meyer P. S., & Ausubel J. H. (1999). The Loglet Lab software: A tutorial. Technological Forecasting and Social Change, 61(3), 273-295. (http://phe.rockefeller.edu/LogletLab/)
doi: 10.1016/S0040-1625(99)00023-2 |
[98] |
Zeng C. J., Qi E. P., Li S. S., Stanley H. E., & Ye F. Y. (2017). Statistical characteristics of breakthrough discoveries in science using the metaphor of black and white swans. Physica A, 487, 40-46.
doi: 10.1016/j.physa.2017.05.041 |
[99] |
Zhang B., Yu X., & Zhang R. Z. (2022). Emerging technology identification based on a dynamic framework: A lifecycle evolution perspective. Technology Analysis & Strategic Management, DOI: 10.1080/09537325.2022.2034779.
doi: 10.1080/09537325.2022.2034779 |
[100] |
Zhang H. H., Zuccala A. A., & Ye F. Y. (2019). Tracing the 'swan-groups' of physics and economics in the key publications of Nobel laureates. Scientometrics, 119(1), 425-436.
doi: 10.1007/s11192-019-03036-9 |
[101] |
Zhang H. H., & Ye F. Y. (2020). Identifying 'associated-sleeping-beauties' in 'swan-groups' based on small qualified datasets of physics and economics. Scientometrics, 122(3), 1525-1537.
doi: 10.1007/s11192-020-03359-y |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||