1 |
Bornmann L . ( 2015). Alternative metrics in scientometrics: A meta-analysis of research into three altmetrics. Scientometrics, 103(3), 1123-1144. doi: 10.1007/s11192-015-1565-y.
doi: 10.1007/s11192-015-1565-y
|
2 |
Bornmann L., & Haunschild R . ( 2016). How to normalize Twitter counts? A first attempt based on journals in the Twitter Index. Scientometrics, 107(3), 1405-1422. doi: 10.1007/s11192-016-1893-6.
doi: 10.1007/s11192-016-1893-6
|
3 |
Bornmann L., Haunschild R., & Adams J . ( 2019). Do altmetrics assess societal impact in a comparable way to case studies? An empirical test of the convergent validity of altmetrics based on data from the UK research excellence framework (REF). Journal of Informetrics, 13(1), 325-340. doi: 10.1016/j.joi.2019.01.008.
doi: 10.1016/j.joi.2019.01.008
|
4 |
Bornmann L., Haunschild R., & Marx W . ( 2016). Policy documents as sources for measuring societal impact: How often is climate change research mentioned in policy-related documents? Scientometrics, 109(3), 1477-1495. doi: 10.1007/s11192-016-2115-y.
doi: 10.1007/s11192-016-2115-y
pmid: 27942080
|
5 |
Haunschild R., Leydesdorff L., & Bornmann L . ( 2019). Library and Information Science papers as topics on Twitter: A network approach to measuring public attention. Paper presented at the ISSI 2019—17th International Conference of the International Society for Scientometrics and Informetrics, Rome, Italy.
|
6 |
Haunschild R., Leydesdorff L., Bornmann L., Hellsten I., & Marx W . ( 2019). Does the public discuss other topics on climate change than researchers? A comparison of explorative networks based on author keywords and hashtags. Journal of Informetrics, 13(2), 695-707. doi: 10.1016/j.joi.2019.03.008.
doi: 10.1016/j.joi.2019.03.008
|
7 |
Haunschild R., Leydesdorff L., Bornmann L., Hellsten I., & Marx W . (2020). Corrigendum to “Does the public discuss other topics on climate change than researchers? A comparison of explorative networks based on author keywords and hashtags” [J. Informetrics 13 (2019) 695-707]. Journal of Informetrics, 14(1), February 2020, 101020. doi: 10.1016/j.joi.2020.101020
|
8 |
Hellsten I., & Leydesdorff L . ( 2020). Automated analysis of actor-topic networks on twitter: New approaches to the analysis of socio-semantic networks. JASIST, 71(1), 3-15. doi: 10.1002/asi.24207
|
9 |
R Core Team . ( 2019). R: A Language and Environment for Statistical Computing (Version 3. 6.0). Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.r-project.org/
|
10 |
Robinson-Garcia N., Costas R., Isett K., Melkers J., & Hicks D . ( 2017). The unbearable emptiness of tweeting—About journal articles. PLOS ONE, 12(8), e0183551. doi: 10.1371/journal.pone.0183551.
doi: 10.1371/journal.pone.0183551
pmid: 28837664
|
11 |
Thelwall M . ( 2018). Early Mendeley readers correlate with later citation counts. Scientometrics, 115(3), 1231-1240. doi: 10.1007/s11192-018-2715-9.
doi: 10.1007/s11192-018-2715-9
|
12 |
Wouters. P., Zahedi Z., & Costas R . (2019) Social media metrics for new research evaluation. In: Glänzel W., Moed H.F., Schmoch U., Thelwall M. (eds) Springer Handbook of Science and Technology Indicators. Springer Handbooks. Springer, Cham, pp 687-713.
|