Journal of Data and Information Science ›› 2022, Vol. 7 ›› Issue (3): 20-48.doi: 10.2478/jdis-2022-0017
• Research Paper • Previous Articles Next Articles
Xuefeng Wang†(), Rongrong Li2,†(
), Yuqin Liu3, Ming Lei1
Received:
2022-02-18
Revised:
2022-06-01
Accepted:
2022-06-02
Online:
2022-07-20
Published:
2022-07-29
Contact:
Xuefeng Wang,Rongrong Li
E-mail:wxf5122@bit.edu.cn;lirr@upc.edu.cn
Add to citation manager EndNote|Ris|BibTeX
URL: http://manu47.magtech.com.cn/Jwk3_jdis/EN/10.2478/jdis-2022-0017
http://manu47.magtech.com.cn/Jwk3_jdis/EN/Y2022/V7/I3/20
This work is licensed under the Creative Commons Attribution 4.0 International License.
Table 3.
The specific search strategy of Alzheimer's disease form Derwent.
Search strategy | Result |
---|---|
TS=((Alzheimer* (disease* or dementia)) or Alzheimer or (Alzheimer (Dementia* or (Sclerosis or Syndrome) or (Type Dementia) or (Alzheimer Type Senile Dementia))) or (Dementia ((Alzheimer's type) or Alzheimer* or (of The Alzheimer* Type) or (Alzheimer's type) or (in Alzheimer's disease) or (of Alzheimers Type))) or (Primary Senile Degenerative Dementia) or (Senile Dementia of The Alzheimer Type)or (Senile Dementia)or (simple senile dementia) )AND PY=(2000-2018) | 48,268 |
Table 4.
The cleaning process and results.
Number | Cleaning process | Results |
---|---|---|
#1 | Separation of primitive natural semantic relations. | 306,957 |
#2 | Delete 684 records with missing relationships. | 305,913 |
Delete 2231 records with missing subject. | 303,682 | |
Delete 2072 records with missing predicate. | 301,610 | |
Delete 362 records with missing PMID number. | 301,248 | |
#3 | Delete the remarks and analysis information of subject, predicate and object. | 301,248 |
#4 | Delete records where Subject and Object are meaningless numbers and mathematical formulas. | 301,242 |
#5 | Remove the SAO semantic structure that is not related to technology and only retain SAO semantic structure whose semantic relationship are the functionally related and conceptually related. | 122,769 |
Table 5.
Extracted SAO semantic structure and corresponding patentee.
Patent Number | Patentee Code | S(Subject) | A(Action) | O(Object) |
---|---|---|---|---|
JP2006199666 | AAKS-C; NAGS-C NAGS-C | Agent | Treats | Amnesia |
JP2008214245 | NAGS-C | Inhibitors | Treats | Alzheimer's Disease |
Inhibitors | Treats | Arteriosclerosis | ||
Inhibitors | Treats | Diabetic Nephropathy | ||
Inhibitors | Treats | Diabetic Neuropathies | ||
Inhibitors | Treats | Diabetic Retinopathy | ||
Inhibitors | Treats | Inflammation | ||
Inhibitors | Treats | Cerebrovascular accident | ||
Inhibitors | Treats | Myocardial Ischemia | ||
WO200294259; EP1387678-A1; AU2002314036; US2004235813 | PLAC-C | Peptides | Disrupts | Adenosine triphosphatase activity |
Amyloid | Interacts_With | aapp | ||
HSP90 Heat-Shock Proteins | Interacts_With | aapp | ||
Pharmaceutical Preparations | Treats | Disease | ||
HSP90 Heat-Shock Proteins | Treats | Disease | ||
HSP90 Heat-Shock Proteins | Treats | Creutzfeldt-Jakob Syndrome | ||
WO200288108; US2003013712; EP1383759; US6727364; AU2002305226; JP2004528351; CN1505625; AU2002305226 | PROC-C | Macular degeneration | Affects | Hair growth |
Pterygium | Affects | Hair growth | ||
Disease | Associated_With | cytokine activity | ||
Acquired Immunodeficiency Syndrome | Causes | Cachexia | ||
Prophylactic treatment | Causes | skin disorder | ||
Prophylactic treatment | Causes | Dermatitis, Atopic | ||
Prophylactic treatment | Causes | Scleroderma | ||
Prophylactic treatment | Causes | Epidermolysis Bullosa | ||
Prophylactic treatment | Causes | Psoriasis | ||
Macular degeneration | Affects | Hair growth | ||
…… | …… | …… | …… | …… |
Table 6.
The semantic similarity calculation results between AO based on UMLS.
S1 | S2 | similarity | S1 | S2 | similarity | S1 | S2 | similarity | S1 | S2 | similarity | S1 | S2 | similarity | S1 | S2 | similarity | ….. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5,474 | 5,518 | 1 | 1,673 | 1,807 | 0.9978 | 4,588 | 4,769 | 0.8387 | 713 | 4,074 | 0.7931 | 36 | 1,324 | 0.75 | 387 | 388 | 0.55 | ….. |
1,989 | 2,047 | 1 | 2,510 | 5,622 | 0.997 | 5,647 | 6,284 | 0.8364 | 723 | 2,367 | 0.7895 | 5,650 | 5,651 | 0.75 | 215 | 3,310 | 0.549 | ….. |
749 | 1,410 | 1 | 704 | 3,003 | 0.9921 | 132 | 3,738 | 0.8364 | 3,835 | 5,584 | 0.7895 | 752 | 2,602 | 0.7442 | 1,913 | 2,778 | 0.5455 | ….. |
2,971 | 5,534 | 1 | 1,702 | 2,235 | 0.992 | 2,794 | 2,795 | 0.8333 | 1,760 | 4,323 | 0.7878 | 6 | 3,894 | 0.7436 | 24 | 161 | 0.5455 | ….. |
1,176 | 3,239 | 1 | 2,462 | 2,555 | 0.9906 | 640 | 644 | 0.8333 | 1,474 | 2,939 | 0.7872 | 667 | 691 | 0.7394 | 2,782 | 4,319 | 0.5455 | ….. |
4,198 | 4,210 | 1 | 2,677 | 4,598 | 0.9903 | 1,830 | 3,717 | 0.8333 | 524 | 5,140 | 0.7872 | 1,152 | 2,685 | 0.7342 | 2,214 | 2,855 | 0.5455 | ….. |
1,601 | 1,623 | 1 | 107 | 3,317 | 0.9822 | 2,967 | 3,144 | 0.8315 | 28 | 3,003 | 0.7865 | 5,921 | 6,045 | 0.7303 | 2,433 | 2,434 | 0.5432 | ….. |
2,432 | 4,948 | 1 | 3,553 | 5,534 | 0.9808 | 1,606 | 2,144 | 0.8315 | 4,542 | 4,560 | 0.7826 | 869 | 3,299 | 0.7297 | 579 | 835 | 0.5405 | ….. |
2,695 | 2,899 | 1 | 662 | 1,567 | 0.9785 | 3,313 | 3,574 | 0.8312 | 44 | 2,217 | 0.7826 | 13 | 3,990 | 0.7296 | 1,651 | 4,657 | 0.5405 | ….. |
478 | 2,504 | 1 | 6 | 1,626 | 0.9766 | 304 | 1,974 | 0.8308 | 2,629 | 3,511 | 0.7805 | 450 | 3,582 | 0.7273 | 3,691 | 5,537 | 0.5399 | ….. |
5,460 | 6,173 | 1 | 9 | 5,136 | 0.9714 | 1,809 | 3,239 | 0.8293 | 27 | 2,265 | 0.7805 | 1,446 | 5,312 | 0.7222 | 1,340 | 4,978 | 0.5385 | ….. |
90 | 1,526 | 1 | 3,055 | 4,685 | 0.9697 | 1,748 | 3,630 | 0.8286 | 1,796 | 2,584 | 0.7805 | 61 | 3,519 | 0.7215 | 793 | 827 | 0.5385 | ….. |
3,919 | 5,935 | 1 | 3,724 | 5,492 | 0.9688 | 1,174 | 3,704 | 0.8266 | 637 | 3,321 | 0.7778 | 552 | 2,545 | 0.7179 | 569 | 676 | 0.5342 | ….. |
1,750 | 1,993 | 1 | 207 | 3,006 | 0.9655 | 4,145 | 5,770 | 0.8235 | 2,441 | 2,443 | 0.7778 | 906 | 2,565 | 0.7179 | 1,798 | 3,144 | 0.5279 | ….. |
3,824 | 5,534 | 1 | 939 | 5,556 | 0.9651 | 2,654 | 2,828 | 0.8235 | 106 | 734 | 0.7713 | 9 | 4,969 | 0.7158 | 1,684 | 2,565 | 0.5263 | ….. |
4,288 | 5,974 | 1 | 250 | 313 | 0.9619 | 648 | 739 | 0.8234 | 215 | 1,639 | 0.7708 | 3,605 | 5,681 | 0.7143 | 2,359 | 5,253 | 0.5263 | ….. |
3,245 | 5,595 | 1 | 1,370 | 5,153 | 0.9616 | 648 | 739 | 0.8234 | 954 | 1,606 | 0.7704 | 106 | 5,450 | 0.7131 | 1,767 | 5,829 | 0.5256 | ….. |
5,524 | 5,915 | 1 | 4,435 | 4,531 | 0.96 | 1,731 | 1,733 | 0.8205 | 659 | 767 | 0.7692 | 472 | 2,258 | 0.7097 | 1,546 | 4,570 | 0.5246 | ….. |
936 | 1,012 | 1 | 791 | 3,555 | 0.96 | 390 | 3,633 | 0.8205 | 834 | 2,514 | 0.7692 | 5,649 | 5,651 | 0.7083 | 407 | 3,474 | 0.5238 | ….. |
1,985 | 2,098 | 1 | 24 | 2,221 | 0.96 | 600 | 1,279 | 0.8205 | 739 | 823 | 0.7691 | 226 | 1,418 | 0.7059 | 186 | 455 | 0.5217 | ….. |
….. | ….. | ….. | ….. | ….. | ….. | ….. | ….. | ….. | ….. | ….. | ….. | ….. | ….. | ….. | ….. | ….. | ….. | ….. |
Table 7.
The semantic similarity calculation results between AO based on UMLS.
AO1 | AO2 | similarity | AO1 | AO2 | similarity | AO1 | AO2 | similarity | AO1 | AO2 | similarity | AO1 | AO2 | similarity | AO1 | AO2 | similarity | ….. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
7 | 661 | 1 | 3 | 4 | 0.5 | 15 | 2,715 | 0.1861 | 15 | 2,285 | 0.079 | 15 | 6,404 | 0.0278 | 107 | 3,714 | 0.0085 | ….. |
28 | 728 | 1 | 3 | 5 | 0.5 | 15 | 7,638 | 0.1861 | 15 | 3,700 | 0.079 | 15 | 7,392 | 0.0278 | 107 | 3,925 | 0.0085 | ….. |
100 | 320 | 1 | 9 | 2,835 | 0.48 | 40 | 1,630 | 0.1828 | 15 | 3,791 | 0.079 | 15 | 7,497 | 0.0278 | 107 | 6,199 | 0.0085 | ….. |
9 | 19 | 0.98 | 9 | 3,872 | 0.48 | 40 | 2,578 | 0.1828 | 15 | 4,099 | 0.079 | 15 | 7,982 | 0.0278 | 107 | 7,552 | 0.0085 | ….. |
86 | 210 | 0.9728 | 9 | 5,795 | 0.48 | 40 | 3,761 | 0.1828 | 15 | 4,295 | 0.079 | 15 | 8,291 | 0.0278 | 27 | 7,813 | 0.0077 | ….. |
46 | 125 | 0.9706 | 90 | 3,053 | 0.4706 | 40 | 3,983 | 0.1828 | 15 | 5,800 | 0.079 | 22 | 1,452 | 0.0278 | 71 | 1,540 | 0.0075 | ….. |
90 | 282 | 0.9706 | 90 | 8,578 | 0.4706 | 40 | 6,052 | 0.1828 | 15 | 5,913 | 0.079 | 22 | 2,325 | 0.0278 | 71 | 3,655 | 0.0075 | ….. |
25 | 835 | 0.96 | 25 | 2,509 | 0.46 | 40 | 7,427 | 0.1828 | 15 | 5,953 | 0.079 | 22 | 3,738 | 0.0278 | 71 | 3,737 | 0.0075 | ….. |
59 | 810 | 0.9445 | 25 | 8,307 | 0.46 | 1 | 3,954 | 0.1667 | 15 | 5,955 | 0.079 | 22 | 3,879 | 0.0278 | 71 | 6,001 | 0.0075 | ….. |
60 | 1,207 | 0.9 | 59 | 2,358 | 0.4445 | 1 | 7,175 | 0.1667 | 15 | 6,056 | 0.079 | 22 | 5,939 | 0.0278 | 71 | 6,129 | 0.0075 | ….. |
87 | 566 | 0.8936 | 59 | 5,968 | 0.4445 | 41 | 1,408 | 0.1667 | 15 | 7,359 | 0.079 | 22 | 6,051 | 0.0278 | 71 | 7,454 | 0.0075 | ….. |
26 | 859 | 0.8846 | 59 | 6,323 | 0.4445 | 41 | 2,662 | 0.1667 | 15 | 7,572 | 0.079 | 22 | 7,369 | 0.0278 | 46 | 1,645 | 0.0073 | ….. |
13 | 41 | 0.875 | 59 | 7,905 | 0.4445 | 41 | 7,606 | 0.1667 | 109 | 3,226 | 0.0715 | 37 | 1,497 | 0.0266 | 46 | 4,009 | 0.0073 | ….. |
27 | 1,137 | 0.8334 | 61 | 3,502 | 0.4385 | 23 | 1,450 | 0.1539 | 69 | 2,962 | 0.0709 | 37 | 3,544 | 0.0266 | 30 | 1,761 | 0.0067 | ….. |
76 | 896 | 0.7756 | 73 | 1,625 | 0.4 | 23 | 2,567 | 0.1539 | 69 | 7,469 | 0.0709 | 37 | 3,736 | 0.0266 | 30 | 2,752 | 0.0067 | ….. |
69 | 258 | 0.775 | 73 | 2,488 | 0.4 | 23 | 2,851 | 0.1539 | 97 | 5,964 | 0.0648 | 37 | 5,920 | 0.0266 | 30 | 4,207 | 0.0067 | ….. |
19 | 66 | 0.7728 | 73 | 6,196 | 0.4 | 23 | 6,274 | 0.1539 | 26 | 1,761 | 0.0633 | 37 | 6,059 | 0.0266 | 30 | 7,587 | 0.0067 | ….. |
74 | 775 | 0.7586 | 73 | 7,854 | 0.4 | 23 | 8,562 | 0.1539 | 26 | 2,752 | 0.0633 | 37 | 7,592 | 0.0266 | 48 | 1,653 | 0.0062 | ….. |
87 | 498 | 0.74 | 87 | 1,592 | 0.3936 | 15 | 1,496 | 0.1464 | 26 | 4,207 | 0.0633 | 41 | 1,340 | 0.0266 | 86 | 4,115 | 0.006 | ….. |
31 | 540 | 0.7364 | 87 | 2,976 | 0.3936 | 15 | 2,353 | 0.1464 | 26 | 7,587 | 0.0633 | 41 | 2,286 | 0.0266 | 23 | 1,536 | 0.0058 | ….. |
….. | ….. | ….. | ….. | ….. | ….. | ….. | ….. | ….. | ….. | ….. | ….. | ….. | ….. | ….. | ….. | ….. | ….. | ….. |
Table 8.
The technology morphology matrix for MERI-C.
TQ1 | … | TQ14 | … | TQ20 | … | TQ36 | |
---|---|---|---|---|---|---|---|
TM1 | Acetic Acid-TREATS-CNS Disorder; | ||||||
TM2 | |||||||
… | … | … | … | … | … | … | … |
TM214 | Down Syndrome-Causes-Alzheimer's Disease; Down Syndrome-Causes-Alzheimer's Disease; | Down Syndrome-Causes-Epilepsy; | |||||
TM215 | Antibodies-Treats-Alzheimer's Disease; Antibodies-Treats-Neurodegenerative Disorders; | ||||||
TM216 | |||||||
TM217 | Ethanol-Treats-Autoimmune Diseases; Ethanol-Treats-Autoimmune Diseases; | … | Gamma-Aminobutyric Acid-Treats-Alzheimer's Disease; Gamma-Aminobutyric Acid-Treats-Parkinson Disease; Gamma-Aminobutyric Acid-Treats-Neurodegenerative Disorders; Gamma-Aminobutyric Acid-Treats-Alzheimer's Disease; Gamma-Aminobutyric Acid-Treats-Parkinson Disease; Gamma-Aminobutyric Acid-Treats-Neurodegenerative Disorders; Gamma-Aminobutyric Acid-Treats-Neurodegenerative Disorders; Potassium Channel Blockers-Treats-Alzheimer's Disease; Ethanol-Treats-Huntington Disease; Ethanol-Treats-Dementia; Ethanol-Treats-Huntington Disease; Ethanol-Treats-Dementia; Ethanol-Treats-Mental Disorders; Serine-Prevents-Dementia; | … | Gamma-Aminobutyric Acid-Treats-Cns Disorder; Gamma-Aminobutyric Acid-Treats-Cns Disorder; Ethanol-Treats-Epilepsy; Ethanol-Treats-Cerebrovascular Accident; Ethanol-Treats-Epilepsy; Ethanol-Treats-Cerebrovascular Accident; | … | … |
… | … | … | … | … | … | … | … |
TM425 |
Table 9.
Results of technology complementarity between institutions based on SAO.
AAKS-C | ABBI-C | ABBO-C | ABLY-C | ACAD-C | ACET-C | ACIM-C | ACOR-C | ACVE-C | ADCE-C | ADDE-C | ADIR-C | AFFI-C | ….. | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AAKS-C | 0 | 0.002 | 0.0016 | 0.0023 | 0.0021 | 0.0023 | 0.0023 | 0.0023 | 0.0023 | 0.0023 | 0.0023 | 0.0023 | 0.0023 | ….. |
ABBI-C | 0.0535 | 0 | 0.0201 | 0.0529 | 0.0509 | 0.0509 | 0.0504 | 0.0513 | 0.0527 | 0.0521 | 0.0511 | 0.0534 | 0.0528 | ….. |
ABBO-C | 0.0656 | 0.0332 | 0 | 0.0653 | 0.0634 | 0.0626 | 0.063 | 0.0642 | 0.0654 | 0.0647 | 0.0637 | 0.066 | 0.0652 | ….. |
ABLY-C | 0.005 | 0.0041 | 0.0041 | 0 | 0.0051 | 0.0049 | 0.005 | 0.005 | 0.0048 | 0.005 | 0.0049 | 0.0048 | 0.005 | ….. |
ACAD-C | 0.0096 | 0.0068 | 0.0068 | 0.0098 | 0 | 0.0086 | 0.0087 | 0.0088 | 0.0096 | 0.0093 | 0.0093 | 0.0096 | 0.0093 | ….. |
ACET-C | 0.0125 | 0.0095 | 0.0087 | 0.0124 | 0.0113 | 0 | 0.0122 | 0.0116 | 0.0123 | 0.0119 | 0.0121 | 0.0125 | 0.0121 | ….. |
ACIM-C | 0.0085 | 0.0049 | 0.005 | 0.0085 | 0.0074 | 0.0082 | 0 | 0.0076 | 0.0079 | 0.0077 | 0.008 | 0.0084 | 0.0075 | ….. |
ACOR-C | 0.0071 | 0.0046 | 0.005 | 0.0071 | 0.0061 | 0.0062 | 0.0063 | 0 | 0.0066 | 0.0062 | 0.0066 | 0.0071 | 0.007 | ….. |
ACVE-C | 0.0023 | 0.0012 | 0.0014 | 0.0021 | 0.0021 | 0.0021 | 0.0018 | 0.0017 | 0 | 0.0019 | 0.0021 | 0.0019 | 0.0021 | ….. |
ADCE-C | 0.004 | 0.0023 | 0.0025 | 0.0041 | 0.0035 | 0.0035 | 0.0033 | 0.0031 | 0.0037 | 0 | 0.0039 | 0.004 | 0.0039 | ….. |
ADDE-C | 0.0091 | 0.0063 | 0.0062 | 0.0089 | 0.0085 | 0.0086 | 0.0085 | 0.0085 | 0.0089 | 0.0089 | 0 | 0.009 | 0.0089 | ….. |
ADIR-C | 0.0016 | 0.0012 | 0.0014 | 0.0014 | 0.0014 | 0.0015 | 0.0015 | 0.0015 | 0.0012 | 0.0015 | 0.0015 | 0 | 0.0015 | ….. |
AFFI-C | 0.0023 | 0.0013 | 0.0013 | 0.0023 | 0.0018 | 0.002 | 0.0014 | 0.0022 | 0.0021 | 0.0021 | 0.0021 | 0.0023 | 0 | ….. |
AGEN-C | 0.0017 | 0.0008 | 0.0013 | 0.0017 | 0.0016 | 0.0018 | 0.0012 | 0.0014 | 0.0015 | 0.0017 | 0.0014 | 0.0017 | 0.0014 | ….. |
AICU-C | 0.0025 | 0.0021 | 0.0013 | 0.0025 | 0.0022 | 0.0023 | 0.0022 | 0.0021 | 0.0021 | 0.0021 | 0.0025 | 0.0025 | 0.0023 | ….. |
AISS-C | 0.006 | 0.0046 | 0.0043 | 0.006 | 0.0051 | 0.0055 | 0.0053 | 0.0056 | 0.0058 | 0.0056 | 0.006 | 0.0058 | 0.0058 | ….. |
AJIN-C | 0.0029 | 0.0023 | 0.0027 | 0.0029 | 0.0025 | 0.0026 | 0.0027 | 0.0027 | 0.0027 | 0.0027 | 0.0027 | 0.0029 | 0.0027 | ….. |
ALKP-C | 0.0027 | 0.0018 | 0.0016 | 0.0027 | 0.0028 | 0.0025 | 0.0027 | 0.0025 | 0.0025 | 0.0025 | 0.0021 | 0.0027 | 0.0027 | ….. |
ALKU-C | 0.0042 | 0.0028 | 0.0025 | 0.0044 | 0.0035 | 0.0039 | 0.0044 | 0.0044 | 0.0044 | 0.0044 | 0.0043 | 0.0042 | 0.0042 | ….. |
ALLR-C | 0.0327 | 0.0297 | 0.0284 | 0.033 | 0.0316 | 0.0311 | 0.0323 | 0.0321 | 0.0327 | 0.0322 | 0.0314 | 0.033 | 0.0327 | ….. |
ALLX-C | 0.0004 | 0.0002 | 0.0002 | 0.0004 | 0.0004 | 0.0004 | 0.0004 | 0.0004 | 0.0004 | 0.0004 | 0.0004 | 0.0004 | 0.0004 | ….. |
….. | ….. | ….. | ….. | ….. | ….. | ….. | ….. | ….. | ….. | ….. | ….. | ….. | ….. | ….. |
Table 10.
Results of technology complementarity between institutions based on IPC classification numbers.
AAKS-C | ABBI-C | ABBO-C | ABLY-C | ACAD-C | ACET-C | ACIM-C | ACOR-C | ACVE-C | ADCE-C | ADDE-C | ADIR-C | AFFI-C | ….. | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AAKS-C | 0 | 0.0897 | 0.1091 | 0.0769 | 0.0684 | 0.1047 | 0.0576 | 0.0538 | 0.0544 | 0.0692 | 0.0682 | 0.0333 | 0.0612 | ….. |
ABBI-C | 0.0712 | 0 | 0.124 | 0.0687 | 0.0681 | 0.126 | 0.0619 | 0.0561 | 0.0511 | 0.0727 | 0.0803 | 0.03 | 0.0686 | ….. |
ABBO-C | 0.0818 | 0.1135 | 0 | 0.0745 | 0.0741 | 0.1288 | 0.0594 | 0.059 | 0.0719 | 0.0867 | 0.0696 | 0.0478 | 0.0548 | ….. |
ABLY-C | 0.0983 | 0.1077 | 0.1242 | 0 | 0.0783 | 0.1336 | 0.0725 | 0.0749 | 0.0765 | 0.0941 | 0.074 | 0.0436 | 0.0715 | ….. |
ACAD-C | 0.1367 | 0.153 | 0.1695 | 0.1251 | 0 | 0.1458 | 0.1009 | 0.0924 | 0.1132 | 0.1395 | 0.1232 | 0.0777 | 0.1038 | ….. |
ACET-C | 0.1058 | 0.1456 | 0.1636 | 0.1174 | 0.0859 | 0 | 0.0954 | 0.0695 | 0.0996 | 0.1131 | 0.0936 | 0.0764 | 0.1006 | ….. |
ACIM-C | 0.1005 | 0.1222 | 0.1306 | 0.0932 | 0.0765 | 0.1318 | 0 | 0.0808 | 0.0812 | 0.1006 | 0.0662 | 0.0408 | 0.0576 | ….. |
ACOR-C | 0.1093 | 0.1296 | 0.1449 | 0.1077 | 0.0781 | 0.1174 | 0.0927 | 0 | 0.09 | 0.1061 | 0.0905 | 0.0708 | 0.0902 | ….. |
ACVE-C | 0.0864 | 0.1028 | 0.1326 | 0.088 | 0.0775 | 0.1312 | 0.0714 | 0.0682 | 0 | 0.0805 | 0.0771 | 0.0425 | 0.0662 | ….. |
ADCE-C | 0.0831 | 0.1041 | 0.1292 | 0.0857 | 0.0857 | 0.1246 | 0.071 | 0.0636 | 0.0605 | 0 | 0.0685 | 0.0518 | 0.0723 | ….. |
ADDE-C | 0.1183 | 0.1464 | 0.1478 | 0.1027 | 0.105 | 0.1391 | 0.0745 | 0.0863 | 0.0941 | 0.1067 | 0 | 0.063 | 0.0788 | ….. |
ADIR-C | 0.1149 | 0.1274 | 0.1561 | 0.1039 | 0.0929 | 0.1556 | 0.0798 | 0.0969 | 0.0908 | 0.1183 | 0.0918 | 0 | 0.0904 | ….. |
AFFI-C | 0.1107 | 0.1342 | 0.133 | 0.0997 | 0.0898 | 0.1463 | 0.0653 | 0.0871 | 0.0828 | 0.1088 | 0.0763 | 0.0583 | 0 | ….. |
AGEN-C | 0.1147 | 0.1321 | 0.1695 | 0.1249 | 0.1017 | 0.1295 | 0.0966 | 0.0826 | 0.0896 | 0.1013 | 0.1174 | 0.0812 | 0.1081 | ….. |
AICU-C | 0.0916 | 0.1114 | 0.1296 | 0.0934 | 0.0862 | 0.1333 | 0.0652 | 0.0741 | 0.0585 | 0.0768 | 0.0689 | 0.0425 | 0.0641 | ….. |
AISS-C | 0.1211 | 0.1379 | 0.1665 | 0.1327 | 0.0944 | 0.159 | 0.1033 | 0.1076 | 0.1065 | 0.1188 | 0.1129 | 0.0764 | 0.0965 | ….. |
AJIN-C | 0.1206 | 0.1338 | 0.1498 | 0.108 | 0.1054 | 0.1572 | 0.0947 | 0.097 | 0.0859 | 0.102 | 0.0913 | 0.0578 | 0.0849 | ….. |
ALKP-C | 0.1511 | 0.1663 | 0.1826 | 0.1467 | 0.1155 | 0.1668 | 0.129 | 0.1101 | 0.1203 | 0.1473 | 0.1285 | 0.0936 | 0.1178 | ….. |
ALKU-C | 0.1144 | 0.1455 | 0.1328 | 0.1083 | 0.0915 | 0.1319 | 0.0975 | 0.0833 | 0.106 | 0.1266 | 0.1094 | 0.0681 | 0.1024 | ….. |
ALLR-C | 0.1419 | 0.1666 | 0.1766 | 0.1337 | 0.0935 | 0.1461 | 0.1179 | 0.0996 | 0.1217 | 0.1443 | 0.1116 | 0.0944 | 0.1089 | ….. |
….. | ….. | ….. | ….. | ….. | ….. | ….. | ….. | ….. | ….. | ….. | ….. | ….. | ….. | ….. |
Table 11.
Comparison of rankings based on the three technology similarity methods with rankings based on expert knowledge.
Institutions | rankings based on SAO | rankings based on expert | absolute value | Institutions | rankings based on IPC | rankings based on expert | absolute value |
---|---|---|---|---|---|---|---|
HOFF-C | 1 | 6 | 5 | UYMI-C | 1 | 7 | 6 |
PFIZ-C | 2 | 1 | 1 | UYXM-C | 2 | 9 | 7 |
TAKE-C | 3 | 8 | 5 | UCNT-C | 3 | 8 | 5 |
FARB-C | 4 | 5 | 1 | SYTO-C | 4 | 5 | 1 |
GLAX-C | 5 | 2 | 3 | UJIN-C | 5 | 10 | 5 |
BRIM-C | 6 | 4 | 2 | ZYMO-C | 6 | 2 | 4 |
ASTR-C | 7 | 3 | 4 | UYSY-C | 7 | 4 | 3 |
AMHP-C | 8 | 9 | 1 | ZHJA-C | 8 | 6 | 2 |
SMIK-C | 9 | 10 | 1 | TAKI-C | 9 | 1 | 8 |
NOVS-C | 10 | 7 | 3 | THRE-C | 10 | 3 | 7 |
The sum of absolute value of difference between the rankings based on technology similarity method with rankings based on expert | 26 | 48 | |||||
The average value of absolute value of difference between the rankings based on technology similarity method with rankings based on expert | 2.6 | 4.8 |
Appendix 1.
The number of S and the concept of S.
No | S | No | S | No | S | No | S | ….. |
---|---|---|---|---|---|---|---|---|
1 | Abetalipoproteinemia | 29 | Alkaline Phosphatase | 67 | Antiepileptic Agents | 112 | Bile Acids | ….. |
2 | Spontaneous abortion | 30 | Alleles | 68 | Epitopes | 113 | Binding Sites | ….. |
3 | Abscess | 31 | Allergens | 69 | Antigens | 114 | Biogenesis | ….. |
4 | Acetic Acid | 32 | Allergic rhinitis NOS | 70 | Antihypertensive Agents | 115 | Biological Products | ….. |
5 | Acetylation | 33 | Alopecia | 71 | Antimalarials | 116 | Biotin | ….. |
6 | Acetylcholine | 34 | Alopecia Areata | 72 | Antineoplastic Agents | 117 | Bipolar Disorder | ….. |
7 | Acetylcholinesterase | 35 | Altitude Sickness | 73 | Antioxidants | 118 | Malignant neoplasm of urinary bladder | ….. |
8 | Acids | 36 | Alzheimer's Disease | 74 | Antiviral Agents | 119 | Bladder, Neurogenic | ….. |
9 | Acquired Immunodeficiency Syndrome | 37 | Amenorrhea | 75 | Anxiety Disorders | 120 | Bulla | ….. |
10 | Acriflavine | 38 | Amides | 76 | Aortic Aneurysm | 121 | Blood Coagulation Disorders | ….. |
11 | Actins | 39 | Amidines | 77 | Aphasia | 122 | Blood Glucose | ….. |
12 | Addison's disease | 40 | Amines | 78 | Apolipoproteins | 123 | Bone Diseases | ….. |
13 | Adenine | 41 | Amino Acids | 79 | Apolipoprotein E | 124 | Bone Diseases, Metabolic | ….. |
14 | adenoma | 42 | Transaminases | 80 | Desire for food | 125 | Bone Marrow Transplantation | ….. |
15 | Adenosine Monophosphate | 43 | Amnesia | 81 | Appetite Regulation | 126 | Bone Regeneration | ….. |
16 | Receptors, Purinergic P1 | 44 | Amyloid | 82 | cardiac arrhythmia | 127 | Bone Resorption | ….. |
17 | ATP phosphohydrolase | 45 | Amyloidosis | 83 | Art Therapy | 128 | Brain Diseases | ….. |
18 | ADENYLATE KINASE | 46 | Amyotrophic Lateral Sclerosis | 84 | Arthritis | 129 | Brain Neoplasms | ….. |
19 | Immunologic Adjuvants | 47 | Analgesics | 85 | Arthritis, Gouty | 130 | Malignant neoplasm of breast | ….. |
….. | ….. | ….. | ….. | ….. | ….. | ….. | ….. | ….. |
Appendix 2.
The number of AO and the concept of AO.
NO | A | O | NO | A | O | NO | A | O | ….. |
---|---|---|---|---|---|---|---|---|---|
1 | Affects | Myelination | 21 | Affects | Hair Growth | 41 | Affects | Tauopathies | ….. |
2 | Affects | Septicemia | 22 | Affects | AIDS Dementia Complex | 42 | Affects | Graves' Disease | ….. |
3 | Affects | Chronic Pain | 23 | Affects | Rheumatoid Arthritis | 43 | Affects | Orchitis | ….. |
4 | Affects | Bacteria | 24 | Affects | Diabetes Mellitus | 44 | Affects | Hashimoto Disease | ….. |
5 | Affects | Helper-Inducer T-Lymphocyte | 25 | Affects | Glomerulonephritis | 45 | Affects | Autoimmune Oophoritis | ….. |
6 | Affects | Proteins | 26 | Affects | Spinal Muscular Atrophy | 46 | Affects | Oxidation-Reduction | ….. |
7 | Affects | Gngm | 27 | Affects | Parkinson Disease | 47 | Affects | Prostate | ….. |
8 | Affects | Response | 28 | Affects | Psoriasis | 48 | Affects | Gluconeogenesis | ….. |
9 | Affects | Aging-Related Process | 29 | Affects | Cerebellar Degeneration | 49 | Affects | Drug Interactions | ….. |
10 | Affects | Entire Nervous System | 30 | Affects | Amyotrophic Lateral Sclerosis | 50 | Affects | Acidification | ….. |
11 | Affects | Neuraxis | 31 | Affects | Lupus Erythematosus, Systemic | 51 | Affects | Energy Balance | ….. |
12 | Affects | Hydrolysis | 32 | Affects | Retinitis Pigmentosa | 52 | Affects | Graft Rejection | ….. |
13 | Affects | Alzheimer's Disease | 33 | Affects | Retroviridae Infections | 53 | Affects | Facilitation | ….. |
14 | Affects | Disease | 34 | Affects | Inflammatory Disorder | 54 | Affects | Receptor Function | ….. |
15 | Affects | Dementia | 35 | Affects | Patients | 55 | Affects | Autoimmune Diseases | ….. |
16 | Affects | Signal Transduction Inhibition | 36 | Affects | Immune System Diseases | 56 | Affects | Sex Behavior | ….. |
17 | Affects | Folliculitis | 37 | Affects | Neurodegenerative Disorders | 57 | Affects | Growth | ….. |
18 | Affects | Diabetes | 38 | Affects | Neoplasm | 58 | Affects | Organism | ….. |
19 | Affects | Aging | 39 | Affects | Lamellipodium Biogenesis | 59 | Affects | Memory Disorders | ….. |
20 | Affects | Apoptosis | 40 | Affects | Intestinal Diseases | 60 | Affects | Insulin Resistance | ….. |
….. | ….. | ….. | ….. | ….. | ….. | ….. | ….. | ….. | ….. |
[1] | Alonso I., & Contreras, D. (2016). Evaluation of semantic similarity metrics applied to the automatic retrieval of medical documents: An UMLS approach. Expert Systems with Applications, 44, 386-399. |
[2] | Bodenreider O., & McCray, A.T. (2003). Exploring semantic groups through visual approaches. Journal of biomedical informatics, 36(6), 414-432. |
[3] | Choi S., Kang, D., Lim, J., & Kim, K. (2012). A fact-oriented ontological approach to SAO-based function modeling of patents for implementing Function-based Technology Database. Expert Systems with Applications, 39(10), 9129-9140. |
[4] | Chung W.-S., Kim, S.-S., Moon, K.-H., Lim, C.-Y., & Yun, S.-W. (2017). A conceptual framework for energy security evaluation of power sources in South Korea. Energy, 137, 1066-1074. doi:https://doi.org/10.1016/j.energy.2017.03.108 |
[5] | Dong W.(2018). Research on Selecting Potential Technology Collaborators based on Technology Complementarity. Beijing Institute of Technology |
[6] | Glenn J.C., & Gordon, T.J. (2009). Futures Research Methodology-Version 3-0: Editorial desconocida. |
[7] | Grimpe C., & Hussinger K. (2008). Pre-empting technology competition through firm acquisitions. Economics Letters, 100(2), 189-191. doi:https://doi.org/10.1016/j.econlet.2008.01.003 |
[8] | Gupta A.K., & Wilemon D. (1996). Changing patterns in industrial R&D management. Journal of Product Innovation Management, 13(6), 497-511. |
[9] | Hagedoorn J.(2002). Inter-firm R&D partnerships: an overview of major trends and patterns since 1960. Research Policy, 31(4), 477-492. |
[10] | Jia J.P., Wang F., Wei C.B., Zhou A.H., Jia X.F., Li F., ... Dong X.M. (2014). The prevalence of dementia in urban and rural areas of China. Alzheimer's & Dementia, 10(1), 1-9. |
[11] | Jia J.P., Wei C.B., Chen S.Q., Li F.Y., Tang Y., Qin W., ... Gauthier S. (2018). The cost of Alzheimer's disease in China and re-estimation of costs worldwide. Alzheimer's & Dementia, 14(4), 483-491. |
[12] | Jiang L.Y.(2014). Study on Chinese Overseas M&A Technology Integration: Based on Technology similarity and Complementarity. Zhejiang University. |
[13] | Johnson S.C.(1967). Hierarchical clustering schemes. Psychometrika, 32(3), 241-254. |
[14] | Laursen K., & Salter A. (2006). Open for innovation: the role of openness in explaining innovation performance among UK manufacturing firms. Strategic Management Journal, 27(2), 131-150. |
[15] | Leiponen A., & Helfat C.E. (2010). Innovation objectives, knowledge sources, and the benefits of breadth. Strategic Management Journal, 31(2), 224-236. |
[16] | Long H., Zhu Y., Jia L.R., Gao B., Liu J., Liu L.H., & Herre H. (2019). An ontological framework for the formalization, organization and usage of TCM-Knowledge. BMC Medical Informatics and Decision Making, 19(2), 53. |
[17] | Madani F., Daim, T., & Weng, C. (2017). ‘Smart building'technology network analysis: applying core-periphery structure analysis. International Journal of Management Science and Engineering Management, 12(1), 1-11. |
[18] | Makri M., Hitt, M.A., & Lane P.J.(2009). Complementary technologies, knowledge relatedness, and invention outcomes in high technology mergers and acquisitions. Social Science Electronic Publishing, 31(6), 602-628. |
[19] | McCray A.T., Burgun, A., & Bodenreider, O. (2001). Aggregating UMLS semantic types for reducing conceptual complexity. Studies in health technology and informatics, 84(01), 216. |
[20] | Moehrle M.G., Walter, L., Geritz, A., & Müller, S. (2005). Patent-based inventor profiles as a basis for human resource decisions in research and development. R&D Management, 35(5), 513-524. |
[21] | Oppenheim C.(1982). The past, present and future of the patents services of Derwent Publications Ltd. Science & Technology Libraries, 2(2), 23-31. |
[22] | Ozusaglam S., Kesidou, E., & Wong, C.Y. (2018). Performance effects of complementarity between environmental management systems and environmental technologies. International Journal of Production Economics, 197, 112-122. doi:https://doi.org/10.1016/j.ijpe.2017.12.026 |
[23] | Park H., Kim, K., Choi, S., & Yoon, J. (2013). A patent intelligence system for strategic technology planning. Expert Systems with Applications, 40(7), 2373-2390. |
[24] | Pei X.D., Li, S.C., & Huang, Y.Z. (2015). Study on the Enhancing Mechanism of Technological Distinctive Competencies. Science &Technology Progress and Policy, 32(20), 76-81. |
[25] | Pidd M.(1997). Tools for thinking—Modelling in management science. Journal of the Operational Research Society, 48(11), 1150-1150. |
[26] | Pivovarov R., & Elhadad, N. (2012). A hybrid knowledge-based and data-driven approach to identifying semantically similar concepts. Journal of biomedical informatics, 45(3), 471-481. |
[27] | Resnik P.(1999). Semantic similarity in a taxonomy: An information-based measure and its application to problems of ambiguity in natural language. Journal of artificial intelligence research, 11, 95-130. |
[28] | Sampaio P.G.V., González, M.O.A., de Vasconcelos, R.M., dos Santos, M.A.T., de Toledo, J.C., & Pereira, J.P.P. (2018). Photovoltaic technologies: Mapping from patent analysis. Renewable and Sustainable Energy Reviews, 93, 215-224. doi:https://doi.org/10.1016/j.rser.2018.05.033 |
[29] | Shang L.N.(2016). Technological Synergy Opportunity Analysis for Target Selection of Technology Mergers and Acquisitions. Beijing Institute of Technology. |
[30] | Wissema J.G.(1976). Morphological analysis: its application to a company TF investigation. Futures, 8(2), 146-153. |
[31] | Wolter B.(2012). It takes all kinds to make a world—Some thoughts on the use of classification in patent searching. World patent information, 34(1), 8-18. doi:https://doi.org/10.1016/j.wpi.2011.08.001 |
[32] | Wu F.F., Luan, J.J., Huang, L.C., & Li, X. (2018). Research Framework of R&D Partners Identification from the Perspective of Industrial Technology Chain. Science &Technology Progress and Policy, 35(01), 73-79. |
[33] | Xu C.Y., Huang, J., Yan, J.Q., & Li, Q. (2009). A Study on Performance of Chinese Listed Companies from Technology-Motivated Acquisition. China Management Studies, 4(04), 18-34. |
[34] | Xu F., & Leng, F.H. (2012). Patent text mining and informetric-based patent technology morphological analysis: an empirical study. Technology Analysis & Strategic Management, 24(5), 467-479. |
[35] | Yoon B.C., & Park, Y.T. (2004, 18-21 Oct. 2004). Morphology analysis approach for technology forecasting. Paper presented at the 2004 IEEE International Engineering Management Conference (IEEE Cat. No.) |
[36] | Zhang D.Y., Xiao, G.H., & Li, W.Y. (2014). Research on the Measurement of the Relatedness of Patent Technologies for Patent Integration. Journal of Intelligence, 33(11), 54-61. |
[37] | Zwicky F.(1969). Discovery, invention, research through the morphological approach. Macmillan, New York, 163(3873), 1317-1318. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||