Journal of Data and Information Science ›› 2022, Vol. 7 ›› Issue (4): 16-38.doi: 10.2478/jdis-2022-0018
• Review • Previous Articles Next Articles
Received:
2022-05-26
Revised:
2022-08-10
Accepted:
2022-08-31
Published:
2022-11-11
Contact:
Brady Lund
E-mail:blund2@g.emporia.edu
Add to citation manager EndNote|Ris|BibTeX
URL: http://manu47.magtech.com.cn/Jwk3_jdis/EN/10.2478/jdis-2022-0018
http://manu47.magtech.com.cn/Jwk3_jdis/EN/Y2022/V7/I4/16
This work is licensed under the Creative Commons Attribution 4.0 International License.
[1] | Acute Market Reports. (2020). Global big data analytics market size, market share, application analysis, regional outlook, growth trends, key players, competitive strategies and forecasts, 2019 to 2027. Retrieved from https://www.researchandmarkets.com/reports/4992328/ |
[2] |
Adam, R. (1991). Laws for the lawless: Ethics in (information) science. Journal of Information Science, 17, 357-372.
doi: 10.1177/016555159101700603 |
[3] | Ajibade, P., & Mutula, S.M. (2020). Big data research outputs in the library and information science. African Journal of Libraries, Archives, and Information Science, 30(1), 49-60. |
[4] | Andres, M.C. (2016). Ethical differences: A literature review of the ethics of competitive intelligence for the LIS professional. Journal of Library and Information Sciences, 4(1), 1-15. |
[5] |
Antell, K., Bales Foote, J., Turner, J., & Shults, B. (2014). Dealing with data: Science librarians' participation in data management at Association of Research Libraries institutions. College and Research Libraries, 75(4), 557-574.
doi: 10.5860/crl.75.4.557 |
[6] | Aragon, C., Hutto, C., Echenique, A., Fiore-Gartland, B., Huang, Y., Kim, J., …, & Bayer, J. (2016). Developing a research agenda for human-centered data science. ACM Conference on Computer Supported Cooperative Work and Social Computing Companion, 19, 529-535. |
[7] |
Ball, G.H., & Hall, D.J. (1967). A clustering technique for summarizing multivariate data. Behavioral Science, 12(2), 153-155.
pmid: 6030099 |
[8] |
Ballantyne, A. (2020). How should we think about clinical data ownership? Journal of Medical Ethics, 46, 289-294.
doi: 10.1136/medethics-2018-105340 pmid: 31911499 |
[9] | Banterle, F. (2019). Data ownership in the data economy:A European dilemma. In Synodinou, T.E., Jougleux, P., Markou, C., & Prastitou, T. (eds.), EU Internet law in the digital era. New York, NY: Springer. https://doi.org/10.1007/978-3-030-25579-4_9 |
[10] |
Bar-Ilan, J. (2007a). Google bombing from a time perspective. Journal of Computer-Mediated Communication, 12(3), 910-938. https://doi.org/10.1111/j.1083-6101.2007.00356.x
doi: 10.1111/j.1083-6101.2007.00356.x |
[11] |
Bar-Ilan, J. (2007b). Manipulating search engine algorithms: The case of Google. Journal of Information, Communication and Ethics in Society, 5(2/3), 155-166.
doi: 10.1108/14779960710837623 |
[12] |
Bar-Ilan, J. (2008). Informetrics at the beginning of the 21st century: A review. Journal of Informetrics, 2(1), 1-52.
doi: 10.1016/j.joi.2007.11.001 |
[13] | Barocas, S., & Boyd, B. (2017). Computing ethics: Engaging the ethics of data science in practice. Communications of the ACM, 60(11), 23-25. |
[14] |
Bates, M.J. (1999). The invisible substrate of information science. Journal of the American Society for Information Science, 50(12), 1043-1050. https://doi.org/10.1002/(SICI)1097-4571(1999)50:12%3C1043::AID-ASI1%3E3.0.CO;2-X
doi: 10.1002/(SICI)1097-4571(1999)50:12<1043::AID-ASI1>3.0.CO;2-X |
[15] | Bates, M.J. (2005). Information and knowledge: An evolutionary framework for information science. Information Research, 10(4), paper 239. |
[16] | Bates, M.J. (2015). The information professions: Knowledge, memory, heritage. Information Research, 20(1), paper 655. http://InformationR.net/ir/20-1/paper655.html |
[17] |
Bath, P.A., Craigs, C., Maheswaran, R., Raymond, J., & Willett, P. (2005). Use of graph thoery to identify patterns of deprivation and high morbidity and mortality in public health data sets. Journal of the American Medical Informatics Association, 12(6), 630-641.
doi: 10.1197/jamia.M1714 |
[18] | Batts, N.C. (1966). Data analysis of science monograph order/cataloging forms. Special Libraries, 57, 583-586. |
[19] |
Bawden, D., & Robinson, L. (2020). “The dearest of our possessions”: Applying Floridi's information privacy concept in models of information behavior and information literacy. Journal of the Association for Information Science and Technology, 71(9), 1030-1043.
doi: 10.1002/asi.24367 |
[20] | Belkin, N.J. (1980). Anomalous states of knowledge as a basis for information retrieval. Canadian Journal of Information and Library Science, 5, 133-143. |
[21] |
Bell, A.G. (1881). The production of sound by radiant energy. Science, 48, 242-253.
doi: 10.1126/science.48.1236.242 |
[22] | Berman, F., Rutenbar, R., Hailpern, B., Christensen, H. Davidson, S., Estrin, D., …, Szalay, A.S. (2018). Realizing the potential of data science. Communications of the ACM, 61(4), 67-72. |
[23] | Blum, A., Hopcroft, J., & Kannan, R. (2020). Foundations of data sccience. Cambridge, UK: University Printing House. |
[24] | Boole, G. (1847). The mathematical analysis of logic. Cambridge, MA: MacMillan, Barclay, and MacMillan. |
[25] |
Borko, H. (1968). Information science: What is it? American Documentation, 19(1), 3-5.
doi: 10.1002/asi.5090190103 |
[26] |
Bozdag, E. (2013). Bias in algorithmic filtering and personalization. Ethics and Information Technology, 15(3), 209-227.
doi: 10.1007/s10676-013-9321-6 |
[27] | Brase, J., & Farquhar, A. (2011). Access to research data. D-Lib Magazine, 17(1/2). https://doi.org/10.1045/january2011-brase |
[28] |
Brennan, P.F., Chiang, M.F., & Ohno-Machado, L. (2018). Biomedical informatics and data science: Evolving fields with significant overlap. Journal of the American Medical Informatics Association, 25(1), 2-3.
doi: 10.1093/jamia/ocx146 pmid: 29267964 |
[29] |
Butler, P. (1951). Librarianship as a profession. The Library Quarterly, 21(4), 235-247. https://doi.org/10.1086/617815
doi: 10.1086/617815 |
[30] |
Cao, L. (2017). Data science: Challenges and directions. Communications of the ACM, 60(8), 59-68.
doi: 10.1145/3015456 |
[31] |
Carlin, A.P. (2003). Disciplinary debates and bases of interdisciplinary studies: The place of research ethics in library and information science. Library and Information Science Research, 25, 3-18.
doi: 10.1016/S0740-8188(02)00163-9 |
[32] |
Cassileth, B.R., Zupkis, R.V., Sutton-Smith, K., & March, V. (1980). Informed consent: Why are its goals imperfectly realized? New England Journal of Medicine, 302, 896-900.
pmid: 7360175 |
[33] | Chen, C., Haddad, D., Selsky, J., Hoffman, J.E., Kravitz, R.L., Estrin, D.E., & Sim, I. (2012). Making sense of mobile health data: An open architecture to improve individual- and population-level health. Journal of Medical Internet Research, 14(4), pe112-e112. |
[34] |
Chen, F., Bollen, K.A., Paxton, P., Curran, P.J., & Kirby, J.B. (2001). Improper solutions in structural equation models: Causes, consequences, and strategies. Sociological Methods and Research, 29(4), 468-508.
doi: 10.1177/0049124101029004003 |
[35] | Chohdary, N.I., Asghar, M.B., & Al Shaheer, M.A. (2021). Predicting LIS scholarly research directions in the era of data science. Library Philosophy and Practice, article 6328. https://digitalcommons.unl.edu/libphilprac/6328 |
[36] | Christopherson, L., Scott, E., Mandal, A., & Baldin, I. (2020). Toward a data lifecycle model for NSF large facilities. Proceedings of Practice and Experience in Advanced Research Computing Conference, 2020. Retrieved from https://doi.org/10.1145/3311790.3396636 |
[37] |
Cleveland, W.S. (2007). Data science: An action plan for expanding the technical areas of the field of statistics. International Statistical Review, 69(1), 21-26.
doi: 10.1111/j.1751-5823.2001.tb00477.x |
[38] |
Cole., N.S. (1981). Bias in testing. American Psychologist, 36(10), 1067-1077.
doi: 10.1037/0003-066X.36.10.1067 |
[39] |
Coleman, C.N. (2020). Managing bias when library collections become data. International Journal of Librarianship, 5(1), 8-19.
doi: 10.23974/ijol.2020.vol5.1.162 |
[40] | Conger, L.D. (1976). Data reference work with machine readable data files in the social sciences. Journal of Academic Librarianship, 2, 60-65. |
[41] | Coombs, C.H. (1964). A theory of data. New York, NY: John Wiley and Sons. |
[42] |
Cooke, L. (2018). Privacy, libraries and the era of big data. IFLA Journal, 44(3), 167-169.
doi: 10.1177/0340035218789601 |
[43] |
Corbett, M., Deardorff, A., & Kovar-Gough, I. (2014). Emerging data management roles for health librarians in electronic medical records. Journal of the Canadian Health Libraries Association, 35, 55-59.
doi: 10.5596/c14-022 |
[44] |
Cox, A., & Pinfield, S. (2014). Research data management and libraries: Current activities and future priorities. Journal of Librarianship and Information Science, 46(4), 299-316.
doi: 10.1177/0961000613492542 |
[45] |
Cox, A., & Tam, W. (2018). A critical analysis of lifecycle models of the research process and research data management. Aslib Journal of Information Management, 70(2), 142-157.
doi: 10.1108/AJIM-11-2017-0251 |
[46] | Cuadra, C.A. (1982). A library and information science research agenda for the 1980s: Final Report. Santa Monica, CA: Cuadra Associates. |
[47] | Dattalo, P. (2010). Ethical dilemmas in sampling. Journal of Social Work Values and Ethics, 7(1), 12-23. |
[48] | Dhar, V. (2013). Data science and prediction. Communications of the ACM, 56(12), 64-73. |
[49] | Dolly, J.P., & Tillman, M.H. (1974). An overview of research artifacts supposedly causing data bias. Proceedings of the Annual Meeting of the American Educational Research Association, 1974. Retrieved from https://files.eric.ed.gov/fulltext/ED101009.pdf |
[50] |
Dube-Rioux, L., & Russo, J.E. (1988). An availability bias in professional judgment. Journal of Behavioral Decision Making, 1(4), 223-237.
doi: 10.1002/bdm.3960010403 |
[51] |
Eastman, C.M., & Jansen, B.J. (2003). Coverage, relevance, and ranking: The impact of query operators on web search engine results. ACM Transactions on Information Systems, 21(4), 383-411.
doi: 10.1145/944012.944015 |
[52] | Egghe, L., & Rousseau, R. (1990). Introduction to informetrics: Quantitative methods in library, documentation, and information science. Amsterdam, NL: Elsevier. |
[53] |
Fairfield, J., & Shtein, H. (2014). Big data, big problems: Emerging issues in the ethics of data science in journalism. Journal of Mass Media Ethics, 29(1), 38-51.
doi: 10.1080/08900523.2014.863126 |
[54] |
Floridi, L. (2014). Open data, data protection, and group privacy. Philosophy and Technology, 27, 1-3.
doi: 10.1007/s13347-014-0157-8 |
[55] | Floridi, L. (2021). Ethics, governance, and policies in artificial intelligence. London, UK: Springer. |
[56] |
Furner, J. (2007). Dewey deracialized: A critical race-theoretic perspective. Knowledge Organization, 34(3), 144-168.
doi: 10.5771/0943-7444-2007-3-144 |
[57] |
Furner, J. (2015). Information science is neither. Library Trends, 63(3), 362-377.
doi: 10.1353/lib.2015.0009 |
[58] |
Fyffe, R. (2015). The value of information: Normativity, epistemology, and library and information science in Luciano Floridi. Portal: Libraries and the Academy, 15(2), 267-286.
doi: 10.1353/pla.2015.0020 |
[59] | Gao, R., & Shah, C. (2020a). Toward creating a fairer ranking in search enginer results. Information Processing and Management, 57(1), article 102138. |
[60] | Gao, R., & Shah, C. (2020b). Counteracting bias and increasing fairness in search and recommender systems. ACM Conference on Recommender Systems, 14, 745-747. |
[61] | Garfield, E., Sher, I.H., & Torpie, R.J. (1964). The use of citation data in writing the history of science. Philadelphia, PA: Institute for Scientific Information. |
[62] | Griffiths, J., & King, D.W. (1985). New directions in library and information science education. Rockville, MD: King Research Inc. |
[63] |
Gummesson, E. (2003). All research is interpretive! Journal of Business and Industrial Marketing, 18(6/7), 482-492.
doi: 10.1108/08858620310492365 |
[64] | Hahn, S., Puffer, S., Torgerson, D.J., & Watson, J. (2005). Methodological bias in cluster randomized trials. BMC Medical Research Methodology, 5, article 10. |
[65] | Hajian, S., Bonchi, F., & Castillo, C. (2016). Algorithmic bias: From discrimination discovery to fairness-aware data mining. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 22, 2125-2126. |
[66] |
Hand, D.J. (2018). Aspects of data ethics in a changing world: Where are we now?. Big data, 6(3), 176-190.
doi: 10.1089/big.2018.0083 |
[67] |
Harmeyer, D. (1995). Potential collection development bias: Some evidence on a controversial topic in California. College and Research Libraries, 56, 101-111.
doi: 10.5860/crl_56_02_101 |
[68] | Hartley, R.V. (1928). Transmission of information. Bell System Technical Journal, July 1928, 535. |
[69] |
Haussler, D. (1988). Quantifying inductive bias: AI learning algorithms and Valiant's learning framework. Artificial Intelligence, 36(2), 177-221.
doi: 10.1016/0004-3702(88)90002-1 |
[70] |
Hoffmann, A.L. (2019). Where fairness fails: On data, algorithms, and the limits of antidiscrimination discourse. Information, Communication, and Society, 22(7), 900-915.
doi: 10.1080/1369118X.2019.1573912 |
[71] | Hoffmann, A.L., Wolf, C.T., Roberts, S.T., & Wood, S. (2018). Beyond fairness, accountability, and transparency in the ethics of algorithms: Contributions and perspectives from LIS. Proceedings of the ASIST Annual Meeting, 81, 695-696. |
[72] | Horst, P. (1965). Factor analysis of data matrices. New York, NY: Holt, Rinehart, and Winston. |
[73] |
Jackson, B. (2018). The changing research data landscape and the experiences of ethics review board chairs. Journal of Academic Librarianship, 44(5), 603-612.
doi: 10.1016/j.acalib.2018.07.001 |
[74] | Janeway, R.C. (1944). Technique of measuring student use of the university library through circulation records (doctoral dissertation). Urbana, IL: University of Illinois. |
[75] |
Jansen, B.J., & Schuster, S. (2011). Bidding on the buying funnel for sponsored search and keyword advertising. Journal of Electronic Commerce Research, 12(1), 1-18.
doi: 10.1007/s10660-012-9087-7 |
[76] |
Järvinen, T.L.N., Sihvonen, R., Bhandari, M., Sprague, S., Malmivaara, A., Paavola, M., Schünemann, H.J., & Guyatt, G.H. (2014). Blinded interpretation of study results can feasibly and effectively diminish interpretation bias. Journal of Clinical Epidemiology, 67(7), 769-772.
doi: 10.1016/j.jclinepi.2013.11.011 pmid: 24560088 |
[77] | Javed, H., Bagh, T., & Razzaq, S. (2017). Herding effects, over confidence, availability bias and representativeness as behavioral determinants of perceived investment performance: An empirical evidence from Pakistan Stock Exchange. Journal of Global Economics, 6(1), 1-13. |
[78] |
Jones, K.M.L. (2019). “Just because you can doesn't mean you should”: Practitioner perceptions of learning analytics ethics. Portal: Libraries and the Academy, 19(3), 407-428.
doi: 10.1353/pla.2019.0025 |
[79] |
Jones, K.M.L., Asher, A., Goben, A., Perry, M.R., Salo, D., Briney, K.A., & Robertshaw, M.B. (2020). “We're being tracked at all times”: Student perspectives of their privacy in relation to learning analytics in higher education. Journal of the Association for Information Science and Technology, 71(9), 1044-1059.
doi: 10.1002/asi.24358 |
[80] |
Jones, K.M.L., & Salo, D. (2018). Learning analytics and the academic library: Professional ethics commitments at a crossroads. College and Research Libraries, 79(3), 304-323.
doi: 10.5860/crl.79.3.304 |
[81] |
Kerr, K.A., Norris, T., & Stockdale, R. (2008). The strategic management of data quality in healthcare. Health Informatics Journal, 14(4), 259-266.
doi: 10.1177/1460458208096555 pmid: 19008276 |
[82] | Kilgour, F.G. (1969). The economic goal of library automation. College & Research Libraries, 30(4), 307-311. |
[83] |
Kinksman, B. (1957). Proper and improper use of statistics in geophysics. Tellus, 9(3), 408-418.
doi: 10.3402/tellusa.v9i3.9099 |
[84] |
Kiviet, J.F. (1995). On bias, inconsistency, and efficacy of various estimators in dynamic panel data models. Journal of Econometrics, 68(1), 53-78.
doi: 10.1016/0304-4076(94)01643-E |
[85] | Klein, L.R. (1953). A textbook of econometrics. White Plains, NY: Row, Peterson, and Company. |
[86] | Koene, A. (2017) Algorithmic bias: Addressing growing concerns. IEEE Technology and Society Magazine, June 2017, 31-32. |
[87] |
Koltay, T. (2017). Data literacy for researchers and data librarians. Journal of Librarianship and Information Science, 49(1), 3-14. https://doi.org/10.1177/0961000615616450
doi: 10.1177/0961000615616450 |
[88] |
Kostrewski, B.J., & Oppenheim, C. (1979). Ethics in information science. Journal of Information Science, 1(5), 277-283.
doi: 10.1177/016555157900100505 |
[89] | Kuiler, E.W., & McNeely, C.L. (2020). Knowledge formulation in the health domain: A semiotics-powered approach to data analytics and democratization. In Batarseh, F.A., & Yang, R., Data democracy: At the nexus of artificial intelligence, software development, and knowledge engineering. Cambridge, MA: Academic Press. |
[90] | Laskowski, C. (2021). Structuring better services for unstructured data: Academic libraries are key to an ethical research data future with big data. Journal of Academic Librarianship, 47(4), 102335. |
[91] |
Liang, F., Yu, W., An, D., Yang, Q., Fu, X., & Zhao, W. (2018). A survey on big data market: Pricing, trading, and protection. IEEE Access, 6, 15132-15154.
doi: 10.1109/ACCESS.2018.2806881 |
[92] | Lund, B.D. (2022). The Art of (Data) Storytelling: Hip Hop Innovation and Bringing a Social Justice Mindset to Data Science and Visualization. The International Journal of Information, Diversity, & Inclusion (IJIDI), 6(1/2), 31-41. |
[93] | Lund, B.D., Wang, T., Shamsi, A., Abdullahi, J., Awojobi, E.A., Borgohain, D.J., …, & Yusuf, A.O. (2021). Barriers to scholarly publishing among library and information science researchers: International perspectives. Information Development. https://doi.org/10.1177/02666669211052522 |
[94] |
Lynn, P., & Jowell, R. (1996). How might opinion polls be improved?: The case for probability sampling. Journal of the Royal Statistical Society: Series A, 159(1), 21-28.
doi: 10.2307/2983465 |
[95] | Ma, J., & Lund, B.D. (2020). The evolution of LIS research topics and methods from 2006 to 2018: A content analysis. Proceedings of the Association for Information Science and Technology, 57(1), e241. |
[96] |
Ma, J., & Lund, B.D. (2021). The evolution and shift of research topics and methods in library and information science. Journal of the Association for Information Science and Technology, 72(8), 1059-1074.
doi: 10.1002/asi.24474 |
[97] | Mamede, S., van Gog, T., van den Berge, K., Rikers, R.M.J., van Saase, J.L., van Guldener, C., & Schmidt, H.G. (2010). Effect of availability bias and reflective reasoning on diagnostic accuracy among internal medicine residents. Journal of the American Medical Association, 304(11), 1198-1203. |
[98] | Marchionini, G. (2016). Information science roles in the emerging field of data science. Journal of Data and Information Science, 1(2), 1-6. |
[99] | Mark, M.M., Eyssell, K.M., & Campbell, B. (1999). The ethics of data collection and analysis. New Directions for Evaluation, 82, 47-56. |
[100] |
Martinez-Mesa, J., Gonzalez-Chica, D.A., Duquia, R.P., Bonamigo, R.R., & Bastos, J.L. (2016). Sampling: How to select participants in my research study? Anais Brasileiros de Dermatologia, 91(3), 326-330.
doi: 10.1590/abd1806-4841.20165254 |
[101] |
Millsap, R.E., & Everson, H.T. (1993). Methodology review: Statistical approaches for assessing measurement bias. Applied Psychological Measurement, 17(4), 297-334.
doi: 10.1177/014662169301700401 |
[102] | Mittelstadt, B.D., Allo, P., Taddeo, M., Wachter, S., & Floridi, L. (2016). The ethics of algorithms: Mapping the debate. Big Data and Society, July-December 2016, 1-21. |
[103] |
Mittelstadt, B.D., & Floridi, L. (2015). The ethics of big data: Current and foreseeable issues in biomedical contexts. Science and Engineering Ethics, 22, 303-341.
doi: 10.1007/s11948-015-9652-2 |
[104] |
Nicholson, N.N., & Bartlett, E. (1962). Who uses university libraries? College and Research Libraries, 23(3), 217-259.
doi: 10.5860/crl_23_03_217 |
[105] | Nissenbaum, H. (2004). Privacy as conxtual integrity. Washington Law Review, 79, 119-158. |
[106] | Noble, S.U. (2018). Algorithms of oppression: How search engines reinforce racism. New York, NY: New York University Press. |
[107] | Ntoutsi, E., Fafalios, P., Gadiraju, U., Iosifidis, V., Nejdl, W., Vidal, M., …, & Staab, S. (2020). Bias in data-driven artificial intelligence systems: An introductory survey. WIREs Data Mining and Knowledge Discovery, 10, paper e1356. https://doi.org/10.1002/widm.1356 |
[108] |
Ortiz-Repiso, V., Greenberg, J., & Calzada-Prado, J. (2018). A cross-institutional analysis of data-related curricula in information science programs. Journal of Information Science, 44(6), 768-784.
doi: 10.1177/0165551517748149 |
[109] |
Osborne, N.K.P., Woods, S., Kieser, J., & Zajac, R. (2014). Does contextual information bias bitemark comparisons? Science and Justice, 54(4), 267-273.
doi: 10.1016/j.scijus.2013.12.005 pmid: 25002044 |
[110] |
Paré, G., Trudel, M.C., Jaana, M., & Kitsiou, S. (2015). Synthesizing information systems knowledge: A typology of literature reviews. Information and Management, 52(2), 183-199.
doi: 10.1016/j.im.2014.08.008 |
[111] | Pather, S., & Gomez, R. (2010). Public access ICT: A south-south comparative analysis of libraries, telecentres and cybercafes in South Africa and Brazil. AMCIS 2010 Proceedings, article 526. https://aisel.aisnet.org/amcis2010/526 |
[112] |
Pederson, E.R., Neighbors, C., Tidwell, J., & Lostutter, T.W. (2011). Do undergraduate student research participants read psychological consent forms? Ethics and Behavior, 21(4), 332-350.
doi: 10.1080/10508422.2011.585601 |
[113] | Pinfield, S., Cox, A.M., & Smith, J. (2014). Research data management and libraries: Relationships, activities, drivers and influencers. PLoS One, 9(12), e114734. |
[114] |
Poole, A.H. (2021). Leading the way: A new model for data science education. Proceedings of the Association for Information Science and Technology, 58(1), 525-531.
doi: 10.1002/pra2.491 |
[115] |
Pope, A. (1975). Bradford's law and the periodical literature of information science. Journal of the American Society for Information Science, 26, 207-213.
doi: 10.1002/asi.4630260403 |
[116] | Prado, J.C., & Marzal, M.A. (2013). Incorporting data literacy into information literacy programs: Core competencies and contents. Libri, 63(2), 123-134. https://doi.org/10.1515/libri-2013-0010 |
[117] | Price, W., & Nicholson, I. (2019). Medical AI and contextual bias. Harvard Journal of Law and Technology, 33, 65-116. |
[118] | Prindle, S., & Loos, A. (2017). Information ethics and academic libraires: Data privacy in the era of big data. Journal of Information Ethics, 26(2), 22-33. |
[119] |
Provost, F., & Fawcett, T. (2013). Data science and its relationship to big data and data-driven decision making. Big Data, 1(1), 51-59.
doi: 10.1089/big.2013.1508 |
[120] | Ranganathan, S.R. (1931). The five laws of library science. London, UK: Edward Goldston, LTD. |
[121] | Ray, J.M. (ed.) (2014). Research data management: Practical strategies for information professionals. West Lafayette, IN: Purdue University. |
[122] | Read, M. (2008). Libraries and repositories. New Reivew of Academic Librarianship, 14(1/2), 71-78. |
[123] | Richards, N.M., & King, J.H. (2014). Big data ethics. Wake Forest Law Review, 49, 393-432. |
[124] | Roberts, S.T. (2016). Commerical content moderation:Digital laborers' dirty work. In Noble, S.U. and Tynes, B. (eds.), The intersectional Internet. New York, NY: Peter Lang. |
[125] | Roeschley, A., & Khader, M. (2020). Defining data ethics in library and information science. iConference Proceedings, 2020. Retrieved from http://hdl.handle.net/2142/106536 |
[126] | Rolfe, H. (2017). Inequality, social mobility and the new economy: Introduction. National Institute Economic Review, 240(1), R1-R4. |
[127] |
Rowley, J. (2007). The wisdom hierarchy: Representation of the DIKW hierarchy. Journal of Information Science, 33(2), 163-180.
doi: 10.1177/0165551506070706 |
[128] |
Rubel, A. (2014). Libraries, electronic resources, and privacy: The case for positive intellectual freedom. The Library Quarterly, 84(2), 183-208.
doi: 10.1086/675331 |
[129] |
Rubel, A., & Jones, K.M.L. (2016). Student privacy in learning analytics: An information ethics perspective. The Information Society, 32(2), 143-159.
doi: 10.1080/01972243.2016.1130502 |
[130] | Rubin, R. (2017). Foundations of library and information science. Chicago, IL: American Library Association. |
[131] |
Rüegg, J., Gries, C., Bond-Lamberty, B., Bowen, G.J., Felzer, B.S., McIntyre, N.E.,... & Weathers, K.C. (2014). Completing the data life cycle: using information management in macrosystems ecology research. Frontiers in Ecology and the Environment, 12(1), 24-30.
doi: 10.1890/120375 |
[132] |
Sanfilippo, M.R., Shvartzshnaider, Y., Reyes, I., Nissenbaum, H., & Egelman, S. (2020). Disaster privacy/privacy disaster. Journal of the Association for Information Science and Technology, 71(9), 1002-1014.
doi: 10.1002/asi.24353 |
[133] |
Saracevic, T. (1999). Information Science. Journal of the American Society for Information Science, 50(12), 1051-1063
doi: 10.1002/(SICI)1097-4571(1999)50:12<1051::AID-ASI2>3.0.CO;2-Z |
[134] | Schradie, J. (2020). The great equalizer reproduces inequality:How the digital divide is a class power divide. In Eidlin, B., & McCarthy, M.A. (ed.), Rethinking class and social difference (vol. 27). Bingley, UK: Emerald Publishing Limited. |
[135] | Selwyn, N. (2020). Re-imagining learning analytics... a case for starting again? Internet and Higher Education, 46, article 100745. |
[136] | Semeler, A.R., & Pinto, A.L. (2020). Librarianship in the age of data science:Data librarianship venn diagram. International Conference on Data and Information in Online Environments, 2020, 118-130. https://doi.org/10.1007/978-3-030-50072-6_10 |
[137] |
Semeler, A.R., Pinto, A.L., & Rozados, H.B.F. (2017). Data science in data librarianship: Core competencies of a data librarian. Journal of Librarianship and Information Science, 51(3), 771-780.
doi: 10.1177/0961000617742465 |
[138] |
Severson, H.H., & Ary, D.V. (1983). Sampling bias due to consent procedures with adolescents. Addictive Behaviors, 8(4), 433-437.
pmid: 6610283 |
[139] |
Shachaf, P. (2005). A global perspective on library association codes of ethics. Library and Information Science Research, 27(4), 513-533.
doi: 10.1016/j.lisr.2005.08.008 |
[140] |
Shankar, K., Jeng, W., Thomer, A., Weber, N., & Yoon, A. (2020). Data curation as collective action during COVID-19. Journal of the Association for Information Science and Technology, 72(3), 280-284.
doi: 10.1002/asi.24406 |
[141] |
Shannon, C.E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27(3), 379-423.
doi: 10.1002/j.1538-7305.1948.tb01338.x |
[142] | Shen, Y. (2015). Strategic planning for a data-driven, shared-access research enterprise: Virginia Tech research data assessment and landscape study. Proceedings of the Association for Information Science and Technology, 52, 1-4. |
[143] |
Shilton, K. (2012). Participatory personal data: An emerging research challenge for the information sciences. Journal of the American Society for Information Science and Technology, 63(10), 1905-1915.
doi: 10.1002/asi.22655 |
[144] | Shiri, A. (2016). Exploring information ethics: A metadata analytics approach. Journal of Information Ethics, 25(1), 17-37. |
[145] |
Si, L., Zhuang, X., Xing, W., & Guo, W. (2013). The cultivation of scientific data specialists: Development of LIS education oriented to e-science service requirements. Library Hi Tech, 31(4), 700-724.
doi: 10.1108/LHT-06-2013-0070 |
[146] |
Siguenza-Guzman, L., Saquicela, V., Avila-Ordonez, E., Vandewalle, J., & Cattrysse, D. (2015). Literature review of data mining applications in academic libraries. The Journal of Academic Librarianship, 41(4), 499-510.
doi: 10.1016/j.acalib.2015.06.007 |
[147] | Šimundić, A. (2013). Bias in research. Biochemia Medica, 23(1), 12-15. |
[148] |
Smith, J., & Noble, H. (2014). Bias in research. Evidence-based Nursing, 17(4), 100-101.
doi: 10.1136/eb-2014-101946 pmid: 25097234 |
[149] | Smith, L.C. (1981). Citation analysis. Library Trends, 30(1), 83-106. |
[150] | Song, I., & Zhu, Y. (2017). Big data and data science: Opportunities and challenges of iSchools. Journal of Data and Information Science, 2(3), 1-18. |
[151] | Spector, W.S. (1956). Handbook of biological data. Washington, D.C.: United States' Department of Energy. |
[152] |
Spink, A., Wolfram, D., Jansen, B.J., & Saracevic, T. (2001). Searching the web: The public and their queries. Journal of the American Society for Information Science and Technology, 52(3), 226-234.
doi: 10.1002/1097-4571(2000)9999:9999<::AID-ASI1591>3.0.CO;2-R |
[153] | Špiranec, S., Kos, D., & George, M. (2019). Searching for critical dimensions in data literacy. Information Research, 24(4), paper colis 1922. https://InformationR.net/ir/24-4/colis/colis1922.html |
[154] | Stobierski, T. (2021). 8 steps in the data life cycle. Retrieved from https://online.hbs.edu/blog/post/data-life-cycle |
[155] | Taylor, R.S. (1966). Professional aspects of information science and technology. In Cuadra, C. (ed), Annual Review of Information Science and Technology (volume 1). New York, NY: John Wiley and Sons. |
[156] | Tenopir, C., Hughes, D., Allard, S., Frame, M., Birch, B., Sandusky, R.J., Langseth, M.L., & Lundeen, A. (2015). Research data services in academic libraries: Data intensive roles for the future? Journal of eScience Librarianship, 4(2). https://doi.org/10.7191/jeslib.2015.1085 |
[157] | Tenopir, C., Rice, N.M., Allard, S., Baird, L., Borycz, J., Christian, L., Grant, B., Olendorf, R., & Sandusky, R.J. (2020). Data sharing, management, use, and reuse: Practices and perceptions of scientists worldwide. PloS One, 15(3), article e0229003. |
[158] |
Tenopir, C., Sandusky, R.J., Allard, S., & Birch, B. (2014). Research data management services in academic research libraries and perceptions of librarians. Library and Information Science Research, 36(2), 84-90.
doi: 10.1016/j.lisr.2013.11.003 |
[159] |
Tenopir, C., Talja, S., Horstmann, W., Late, E., Hughes, D., Pollock, D., Schmidt, B., Baird, L., Sandusky, R.J., & Allard, S. (2017). Research data services in European academic research libraries. LIBER Quarterly, 27(1), 23-44.
doi: 10.18352/lq.10180 |
[160] | Thelwall, M. (2004). Link analysis: An information science approach. Amsterdam, NL: Elsevier. |
[161] |
Tremblay, M.C., Deckard, G.J., & Klein, R. (2016). Health informatics and analytics: Building a program to integrate business analytics across clinical and administrative disciplines. Journal of the American Medical Informatics Association, 23(4), 824-828.
doi: 10.1093/jamia/ocw055 |
[162] |
Trepanier, C., Shiri, A., & Samek, T. (2019). An examination of IFLA and Data Science Association ethical codes. IFLA Journal, 45(4), 289-301.
doi: 10.1177/0340035219849614 |
[163] |
Tukey, J.W. (1962). The future of data analysis. The Annals of Mathematical Statistics, 33(1), 1-67.
doi: 10.1214/aoms/1177704711 |
[164] | Turing, A.M. (1936). On computable numbers, with an application to the Entscheidungsproblem. Journal of Math, 58, 230-265. |
[165] |
van der Aalst, W.M.P., Bichler, M., & Heinzl, A. (2017). Responsible data science. Business and Information Systems Engineering, 59, 311-313.
doi: 10.1007/s12599-017-0487-z |
[166] |
Virkus, S., & Garoufallou, E. (2019). Data science from a library and information science perspective. Data Technologies and Applications, 53(4), 422-441.
doi: 10.1108/DTA-05-2019-0076 |
[167] | Wallace, D.P. (1985). The use of statistical methods in library and information science. Journal of the Association for Information Science and Technology, 36(6), 402-411. |
[168] |
Waller, M.A., & Fawcett, S.E. (2013). Data science, predictive analytics, and big data: A revolution that will transform supply chain design and management. Journal of Business Logistics, 34(2), 77-84.
doi: 10.1111/jbl.12010 |
[169] | Walter, S. (2008). The library as ecosystem. Library Journal, 133(16), 28-32. |
[170] |
Wang, L. (2018). Twinning data science with information science in schools of library and information science. Journal of Documentation, 74(6), 1243-1257.
doi: 10.1108/JD-02-2018-0036 |
[171] | Wang, Y., & Lin, C. (2019). A survey of data science programs and courses in the iSchools. Proceedings of the ASIST Annual Meeting, 56, 801-802. |
[172] | Washington Durr, A.K. (2020). A text analysis of data science career opportunities and US iSchool curriculum. Journal of Education for Library and Information Science, 61(2), 270-293. |
[173] |
Westgard, J.O., & Hunt, M.R. (1973). Use and interpretation of common statistical tests in method-comparison studies. Clinical Chemistry, 19(1), 49-57.
pmid: 4683366 |
[174] | White, H.D. (1977). Machine-readable social science data. Englewood, CO: Information Handling Services. |
[175] | Whittaker, M., Alper, M., Bennett, C.L., Hendren, S., Kaziunas, L., Mills, M., …, & West, S.M. (2019). Disability, bias, and AI. New York, NY: AI Now. |
[176] |
Wilholt, T. (2009). Bias and values in scientific research. Studies in History and Philosophy of Science: Part A, 40(1), 92-101.
doi: 10.1016/j.shpsa.2008.12.005 |
[177] |
Wood, S.E. (2017). Police body cameras and professional responsibility: Public records and private evidence. Preservation, Digital Technology, and Culture, 46(1), 41-51.
doi: 10.1515/pdtc-2016-0030 |
[178] |
Yarger, L., Payton, F.C., & Neupane, B. (2020). Algorithmic equity in the hiring of underrepresented IT job candidates. Online Information Review, 44(2), 383-395.
doi: 10.1108/OIR-10-2018-0334 |
[179] | Zhang, P., & Benjamin, R.I. (2007). Understanding information related fields: A conceptual framework. Journal of the Association for Information Science and Technology, 58(13), 1934-1947. |
[180] | Zimmer, M. (2008). Preface: Critical perspectives on web 2.0. First Monday, 13(3). https://firstmonday.org/ojs/index.php/fm/article/download/2137/1943 |
[181] | Zwitter, A. (2014). Big data ethics. Big Data and Society, 1(2), 1-6. |
[1] | Gianpiero Bianchi, Renato Bruni, Cinzia Daraio, Antonio Laureti Palma, Giulio Perani, Francesco Scalfati. Exploring the Potentialities of Automatic Extraction of University Webometric Information [J]. Journal of Data and Information Science, 2020, 5(4): 43-55. |
[2] | Cinzia Daraio, Renato Bruni, Giuseppe Catalano, Alessandro Daraio, Giorgio Matteucci, Monica Scannapieco, Daniel Wagner-Schuster, Benedetto Lepori. A Tailor-made Data Quality Approach for Higher Educational Data [J]. Journal of Data and Information Science, 2020, 5(3): 129-160. |
[3] | Yaoyao Song, Torben Schubert, Huihui Liu, Guoliang Yang. Measuring Scientific Productivity in China Using Malmquist Productivity Index [J]. Journal of Data and Information Science, 2019, 4(1): 32-59. |
[4] | Jane Greenberg. Big Metadata, Smart Metadata, and Metadata Capital: Toward Greater Synergy Between Data Science and Metadata [J]. Journal of Data and Information Science, 2017, 2(3): 19-36. |
[5] | Il-Yeol Song , Yongjun Zhu. Big Data and Data Science: Opportunities and Challenges of iSchools [J]. Journal of Data and Information Science, 2017, 2(3): 1-18. |
[6] | Ling Wei, Haiyun Xu, Zhenmeng Wang, Kun Dong, Chao Wang, Shu Fang. Topic Detection Based on Weak Tie Analysis: A Case Study of LIS Research [J]. Journal of Data and Information Science, 2016, 1(4): 81-101. |
[7] | Yating LI & Bin ZHANG. A comparative study on institutional collaboration characteristics in EM and LIS in China [J]. Journal of Data and Information Science, 2015, 7(4): 62-77. |
[8] | Jianhua WU, Yanan CHEN & Xiangtao MA. Balance between education and game-play — A case study of design and optimization of the mini-game book classification [J]. Journal of Data and Information Science, 2015, 7(1): 53-65. |
[9] | Yuelin LI, Ying LI & Ang LI. Chinese college students' understanding of Internet ethical issues: A survey of awareness and attitude [J]. Journal of Data and Information Science, 2014, 7(3): 18-32. |
[10] | Dehua HU & Dan CHE. Developing the information-seeking behavior scale for undergraduates [J]. Journal of Data and Information Science, 2013, 6(1): 78-96. |
[11] | Yang ZHANG & Wanyang LING. A comparative study of information diffusion in weblogs and microblogs based on social network analysis [J]. Journal of Data and Information Science, 2012, 5(4): 51-66. |
[12] | Geoffrey Z. LIU & Yan HUO. Information behaviors of Chinese K-12 physical education teachers: A survey study [J]. Journal of Data and Information Science, 2012, 5(1): 15-33. |
[13] | Jianhua WU, Jing GUO & Jing SUN. A comparative analysis of information literacy curriculum standards in the educational programs of high schools in China and in the United States [J]. Journal of Data and Information Science, 2011, 4(2): 41-59. |
[14] | ZHANG Yang & ZHANG Jie. An Informetric analysis of web citation in Chinese journals of Library and Information Science in recent years [J]. Journal of Data and Information Science, 2010, 3(3): 46-62. |
[15] | Li-Ping KU. Introduction to information seeking behavior—A review of literature and field practice directions [J]. Journal of Data and Information Science, 2010, 3(1): 65-78. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||