Journal of Data and Information Science ›› 2023, Vol. 8 ›› Issue (1): 29-46.doi: 10.2478/jdis-2023-0003
• Research Paper • Previous Articles Next Articles
Yurui Huang, Chaolin Tian, Yifang Ma†()
Received:
2022-12-30
Accepted:
2023-01-04
Online:
2023-02-20
Published:
2023-02-22
Contact:
†Yifang Ma (Email:
Add to citation manager EndNote|Ris|BibTeX
URL: http://manu47.magtech.com.cn/Jwk3_jdis/EN/10.2478/jdis-2023-0003
http://manu47.magtech.com.cn/Jwk3_jdis/EN/Y2023/V8/I1/29
This work is licensed under the Creative Commons Attribution 4.0 International License.
Table 2.
Descriptive statistics for the entire sample (Nobel laureates and their prizewinning-work collaborators).
Prize year | Total #Publication | Total #Citation | |
---|---|---|---|
Minimum | 1934 | 10 | 443 |
Maximum | 2011 | 1,627 | 194,896 |
Mean | 1987 | 245.9 | 25,662.6 |
Median | 1991 | 157 | 13,061 |
Standard deviation | 18.6 | 266.1 | 31,571.4 |
Count | 335 | 335 | 335 |
Table 3.
Matching results by applying different matching techniques.
Average citation index before prizewinning | ||||||
---|---|---|---|---|---|---|
Matching Techniques | - | CEM | PSM | |||
Group | Control | Treated | Control | Treated | Control | Treated |
Observations | 227 | 108 | 80 | 80 | 84 | 108 |
Mean | 4.7083 | 5.2350 | 5.0701 | 5.2869 | 5.1353 | 5.2350 |
Std. dev. | 1.4886 | 1.5034 | 1.7627 | 1.6595 | 1.5821 | 1.5034 |
Minimum | 0.3519 | 0.1997 | 0 | 0 | 1.3754 | 0.1997 |
Maximum | 8.4902 | 8.2194 | 8.3668 | 8.4933 | 8.4902 | 8.2194 |
Table 4.
Regression results and CTA tests by applying different matching techniques.
DID regression Model Results | |||
---|---|---|---|
Model | Model I | Model II | Model III |
Matching Techniques | - | CEM | PSM |
ATT | -0.1488 | -0.0780 | -0.1481 |
SE | 0.0998 | 0.1307 | 0.1317 |
Common trend assumption | Fail | Pass | Pass |
p-value | 0.0999 | 0.6836 | 0.1582 |
Fixed Effect Controls | |||
Individual | Yes | Yes | Yes |
Year | Yes | Yes | Yes |
[1] |
Abadie A., & Imbens G. W. (2006). Large sample properties of matching estimators for average treatment effects. Econometrica, 74(1), 235-267.
doi: 10.1111/j.1468-0262.2006.00655.x |
[2] | Austin P. C. (2009). Some methods of propensity-score matching had superior performance to others: results of an empirical investigation and Monte Carlo simulations. Biometrical Journal: Journal of Mathematical Methods in Biosciences, 51(1), 171-184. |
[3] |
Azoulay P., Graff Zivin J. S., & Wang J. (2010). Superstar extinction. The Quarterly Journal of Economics, 125(2), 549-589.
doi: 10.1162/qjec.2010.125.2.549 |
[4] |
Becker S. O., & Ichino A. (2002). Estimation of average treatment effects based on propensity scores. The Stata Journal, 2(4), 358-377.
doi: 10.1177/1536867X0200200403 |
[5] |
Blackwell M., Iacus S., King G., & Porro G. (2009). cem: Coarsened exact matching in Stata. The Stata Journal, 9(4), 524-546.
doi: 10.1177/1536867X0900900402 |
[6] | Borjas G. J., & Doran K. B. (2015). Prizes and productivity how winning the fields medal affects scientific output. Journal of human resources, 50(3), 728-758. |
[7] | Bourdieu P. (2004). Science of science and reflexivity. Polity. |
[8] |
Broadus R. N. (1987). Toward a definition of “bibliometrics”. Scientometrics, 12(5), 373-379.
doi: 10.1007/BF02016680 |
[9] |
Chan H. F., Frey B. S., Gallus J., & Torgler B. (2014). Academic honors and performance. Labour Economics, 31, 188-204.
doi: 10.1016/j.labeco.2014.05.005 |
[10] | Coca-Perraillon M. (2007). Local and global optimal propensity score matching. SAS Global Forum, https://support.sas.com/resources/papers/proceedings/proceedings/forum2007/185-2007.pdf |
[11] |
Cover T., & Hart P. (1967). Nearest neighbor pattern classification. IEEE transactions on information theory, 13(1), 21-27.
doi: 10.1109/TIT.1967.1053964 |
[12] |
Donald S. G., & Lang K. (2007). Inference with difference-in-differences and other panel data. The review of Economics and Statistics, 89(2), 221-233.
doi: 10.1162/rest.89.2.221 |
[13] |
Fortunato S., Bergstrom C. T., Börner K., Evans J. A., Helbing D., Milojević S., Petersen A. M., Radicchi F., Sinatra R., & Uzzi B. (2018). Science of science. Science, 359(6379), eaao0185.
doi: 10.1126/science.aao0185 |
[14] |
Garrido M. M., Kelley A. S., Paris J., Roza K., Meier D. E., Morrison R. S., & Aldridge M. D. (2014). Methods for constructing and assessing propensity scores. Health services research, 49(5), 1701-1720.
doi: 10.1111/1475-6773.12182 pmid: 24779867 |
[15] | Heckman J. J., LaLonde R. J., & Smith J. A. (1999). The economics and econometrics of active labor market programs. In Handbook of labor economics (Vol. 3, pp. 1865-2097). Elsevier. |
[16] |
Hill J., & Reiter J. P. (2006). Interval estimation for treatment effects using propensity score matching. Statistics in medicine, 25(13), 2230-2256.
doi: 10.1002/sim.2277 pmid: 16220488 |
[17] |
Hirsch J. E. (2005). An index to quantify an individual's scientific research output. Proc Natl Acad Sci U S A, 102(46), 16569-16572. https://doi.org/10.1073/pnas.0507655102
doi: 10.1073/pnas.0507655102 |
[18] |
Huang J. M., Gates A. J., Sinatra R., & Barabási A. L. (2020). Historical comparison of gender inequality in scientific careers across countries and disciplines. Proceedings of the National Academy of Sciences, 117(9), 4609-4616.
doi: 10.1073/pnas.1914221117 |
[19] |
Huber M., Lechner M., & Steinmayr A. (2015). Radius matching on the propensity score with bias adjustment: tuning parameters and finite sample behaviour. Empirical Economics, 49(1), 1-31.
doi: 10.1007/s00181-014-0847-1 |
[20] | Iacus S. M., King G., & Porro G. (2012). Causal inference without balance checking: Coarsened exact matching. Political analysis, 20(1), 1-24. |
[21] |
Jin C., Ma Y. F., & Uzzi B. (2021). Scientific prizes and the extraordinary growth of scientific topics. Nature Communications, 12(1), 1-11.
doi: 10.1038/s41467-020-20314-w |
[22] |
King G., & Nielsen R. (2019). Why propensity scores should not be used for matching. Political analysis, 27(4), 435-454.
doi: 10.1017/pan.2019.11 |
[23] | King G., Nielsen R., Coberley C., Pope J. E., & Wells A. (2011). Comparative effectiveness of matching methods for causal inference. Unpublished manuscript, Institute for Quantitative Social Science, Harvard University, Cambridge, MA. |
[24] | Leuven E., & Sianesi B. (2003). PSMATCH2: Stata module to perform full Mahalanobis and propensity score matching, common support graphing, and covariate imbalance testing. |
[25] |
Li J. C., Yin Y. A., Fortunato S., & Wang D. S. (2019). A dataset of publication records for Nobel laureates. Scientific data, 6(1), 1-10.
doi: 10.1038/s41597-018-0005-2 |
[26] |
Li W. H., Aste T., Caccioli F., & Livan G. (2019). Early coauthorship with top scientists predicts success in academic careers. Nat Commun, 10(1), 5170. https://doi.org/10.1038/s41467-019-13130-4
doi: 10.1038/s41467-019-13130-4 pmid: 31729362 |
[27] |
Liu M. J., & Hu X. (2022). Movers' advantages: The effect of mobility on scientists' productivity and collaboration. Journal of Informetrics, 16(3), 101311.
doi: 10.1016/j.joi.2022.101311 |
[28] |
Ma Y. F., Mukherjee S., & Uzzi B. (2020). Mentorship and protege success in STEM fields. Proc Natl Acad Sci U S A, 117(25), 14077-14083. https://doi.org/10.1073/pnas.1915516117
doi: 10.1073/pnas.1915516117 |
[29] |
Ma Y. F., & Uzzi B. (2018). Scientific prize network predicts who pushes the boundaries of science. Proc Natl Acad Sci U S A, 115(50), 12608-12615. https://doi.org/10.1073/pnas.1800485115
doi: 10.1073/pnas.1800485115 |
[30] | McCaffrey D. F., & Bell R. M. (2003). Bias reduction in standard errors for linear regression with multi-stage samples. Quality control and applied statistics, 48(6), 677-682. |
[31] |
Merton R. K. (1968). The Matthew effect in science: The reward and communication systems of science are considered. Science, 159(3810), 56-63.
pmid: 5634379 |
[32] |
Petersen A. M. (2018). Multiscale impact of researcher mobility. Journal of The Royal Society Interface, 15(146), 20180580.
doi: 10.1098/rsif.2018.0580 |
[33] |
Petersen A. M., Fortunato S., Pan R. K., Kaski K., Penner O., Rungi A., Riccaboni M., Stanley H. E., & Pammolli F. (2014). Reputation and impact in academic careers. Proc Natl Acad Sci U S A, 111(43), 15316-15321. https://doi.org/10.1073/pnas.1323111111
doi: 10.1073/pnas.1323111111 |
[34] | Price D. J. (1986). Little science, big science... and beyond (Vol. 480). Columbia University Press New York. |
[35] |
Radicchi F., Fortunato S., & Castellano C. (2008). Universality of citation distributions: Toward an objective measure of scientific impact. Proceedings of the National Academy of Sciences, 105(45), 17268-17272.
doi: 10.1073/pnas.0806977105 |
[36] |
Rosenbaum P. R., & Rubin D. B. (1983). The central role of the propensity score in observational studies for causal effects. Biometrika, 70(1), 41-55.
doi: 10.1093/biomet/70.1.41 |
[37] | Roth J., Sant'Anna P. H., Bilinski A., & Poe J. (2022). What's Trending in Difference-in-Differences? A Synthesis of the Recent Econometrics Literature. arXiv preprint arXiv:2201.01194. |
[38] |
Rubin D. B. (1977). Assignment to treatment group on the basis of a covariate. Journal of educational Statistics, 2(1), 1-26.
doi: 10.3102/10769986002001001 |
[39] |
Rubin D. B. (2005). Causal inference using potential outcomes: Design, modeling, decisions. Journal of the American Statistical Association, 100(469), 322-331.
doi: 10.1198/016214504000001880 |
[40] | Sinatra R., Wang D. S., Deville P., Song C. M., & Barabasi A. L. (2016). Quantifying the evolution of individual scientific impact. Science, 354(6312). https://doi.org/10.1126/science.aaf5239 |
[41] | Stuart E. A. (2010). Matching methods for causal inference: A review and a look forward. Statistical science: a review journal of the Institute of Mathematical Statistics, 25(1), 1. |
[42] |
Uzzi B., Mukherjee S., Stringer M., & Jones B. (2013). Atypical combinations and scientific impact. Science, 342(6157), 468-472.
doi: 10.1126/science.1240474 pmid: 24159044 |
[43] |
Wang D. S., Song C. M., & Barabási A. L. (2013). Quantifying long-term scientific impact. Science, 342(6154), 127-132.
doi: 10.1126/science.1237825 pmid: 24092745 |
[44] |
Wang J. X. (2021). To use or not to use propensity score matching? Pharmaceutical Statistics, 20(1), 15-24.
doi: 10.1002/pst.2051 |
[45] |
Yang Y., Chawla N. V., & Uzzi B. (2019). A network's gender composition and communication pattern predict women's leadership success. Proceedings of the National Academy of Sciences, 116(6), 2033-2038.
doi: 10.1073/pnas.1721438116 |
[1] | Joel Emanuel Fuchs, Lawrence Smolinsky, Ronald Rousseau. Confidence Intervals for Relative Intensity of Collaboration (RIC) Indicators [J]. Journal of Data and Information Science, 2022, 7(4): 5-15. |
[2] | Andrea Reyes Elizondo, Clara Calero-Medina, Martijn S. Visser. The Three-Step Workflow: A Pragmatic Approach to Allocating Academic Hospitals’ Affiliations for Bibliometric Purposes [J]. Journal of Data and Information Science, 2022, 7(1): 20-36. |
[3] | Mike Thelwall, Saheeda Thelwall. How Has Covid-19 Affected Published Academic Research? A Content Analysis of Journal Articles Mentioning the Virus [J]. Journal of Data and Information Science, 2021, 6(4): 1-12. |
[4] | Dag W. Aksnes, Kaare Aagaard. Lone Geniuses or One among Many? An Explorative Study of Contemporary Highly Cited Researchers [J]. Journal of Data and Information Science, 2021, 6(2): 41-66. |
[5] | Fangjie Xi, Ronald Rousseau, Xiaojun Hu. “Sparking” and “Igniting” Key Publications of 2020 Nobel Prize Laureates [J]. Journal of Data and Information Science, 2021, 6(2): 28-40. |
[6] | Janne Pölönen, Björn Hammarfelt. Historical Bibliometrics Using Google Scholar: The Case of Roman Law, 1727-2016 [J]. Journal of Data and Information Science, 2020, 5(3): 18-32. |
[7] | Yves Fassin. The Compound F²-index and the Compound H-index as Extension of the f² and h-indexes from a Dynamic Perspective ① [J]. Journal of Data and Information Science, 2020, 5(3): 71-83. |
[8] | Lawrence Smolinsky, Aaron J Lercher. Co-author Weighting in Bibliometric Methodology and Subfields of a Scientific Discipline [J]. Journal of Data and Information Science, 2020, 5(3): 84-96. |
[9] | Carlos Luis González-Valiente, Magda León Santos, Ricardo Arencibia-Jorge. Evolution of the Socio-cognitive Structure of Knowledge Management (1986-2015): An Author Co-citation Analysis [J]. Journal of Data and Information Science, 2019, 4(2): 36-55. |
[10] | Kaare Aagaard. Performance-based Research Funding in Denmark: The Adoption and Translation of the Norwegian Model(1) [J]. Journal of Data and Information Science, 2018, 3(4): 20-30. |
[11] | Gunnar Sivertsen. The Norwegian Model in Norway [J]. Journal of Data and Information Science, 2018, 3(4): 3-19. |
[12] | Janne Pölönen. Applications of, and Experiences with, the Norwegian Model in Finland [J]. Journal of Data and Information Science, 2018, 3(4): 31-44. |
[13] | Ting Yue, Liying Yang, Per Ahlgren, Jielan Ding, Shuangqing Shi, Rainer Frietsch. A Comparison of Citation Disciplinary Structure in Science between the G7 Countries and the BRICS Countries [J]. Journal of Data and Information Science, 2018, 3(3): 14-31. |
[14] | Jose A. Moral-Munoz, Manuel Arroyo-Morales, Barbara F. Piper, Antonio I. Cuesta-Vargas, Lourdes Díaz-Rodríguez, William C.S. Cho, Enrique Herrera-Viedma, Manuel J. Cobo . Thematic Trends in Complementary and Alternative Medicine Applied in Cancer-Related Symptoms [J]. Journal of Data and Information Science, 2018, 3(2): 1-19. |
[15] | Garner Jon,L. Porter Alan,Leidolf Andreas,Baker Michelle. Measuring and Visualizing Research Collaboration and Productivity [J]. Journal of Data and Information Science, 2018, 3(1): 54-81. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||